Skip to content

Implementation of the DeepVesselNet deep learning network

Notifications You must be signed in to change notification settings

JonasLamy/deepvesselnet

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

#Dependencies

  1. keras
  2. tensorflow / theano as backend for keras (tensoflow recommended)
  3. sklearn
  4. numpy

#Installation python setup.py install

#Usage

from dvn import FCN, VNET, UNET  # import libraries

net = FCN()                                 # create the network object (You can replace FCN with VNET or UNET),
					    # there is a 'dim' parameter which takes the values 2, or 3 to build 2D or 3D versions of the networks (Default is 3)
					    # there is a 'cross_hair' parameter which builds a network with cross-hair filters when set to True (Default is False)

net.compile()                               # compile the network (supports keras compile parameters)
net.fit(x=X, y=Y, epochs=10, batch_size=10) # train the network (supports keras fit parameters)
preds = net.predict(x=X)                    # predict (supports keras predict parameters)
net.save(filename='model.dat')              # save network params
net = FCN.load(filename='model.dat')        # Load network params  (You can replace FCN with VNET or UNET as used above)

About

Implementation of the DeepVesselNet deep learning network

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%