Skip to content

Joyyang158/self-improvement-of-LLMs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Dataset

SPIN-generated Data

zephyr-7b-sft-full, Llama-2-7b-ultrachat200k

GPT-Score Data

zephyr-7b-sft-full, Llama-2-7b-ultrachat200k

Model

Fine-tuned by SPIN-generated Data

zephyr-7b-sft-full

Iter0, Iter1, Iter2, Iter3

Llama-2-7b-ultrachat200k

Iter0, Iter1, Iter2, Iter3

Fine-tuned by SPIN-GPT-preference Data

zephyr-7b-sft-full

Iter0, Iter1, Iter2, Iter3

Files

csv_big_spender.py:

SPIN results

zephyr-7b-sft-full

Task arc-challenge(25) arc-easy(25) truhfulqa-mc1(0) truhfulqa-mc2(0) winogrande(5) gsm8k(5) hellaswag(10) mmlu(5) Average
SFT 0.5708 0.8375 0.2778 0.4038 0.7616 0.3184 0.8102 0.5877 0.5710
SPIN-iter0 0.5922 0.8266 0.3244 0.4615 0.7680 0.2889 0.8260 0.5901 0.5847
SPIN-iter1 0.5853 0.8203 0.2901 0.4341 0.7601 0.3161 0.8172 0.5846 0.5760
SPIN-iter2 0.5904 0.8241 0.3072 0.4328 0.7609 0.2760 0.8197 0.5850 0.5745
SPIN-iter3 0.5819 0.8245 0.3146 0.4515 0.7561 0.2752 0.8181 0.5786 0.5751

Llama-2-7b-ultrachat200k

Task arc-challenge(25) arc-easy(25) truhfulqa-mc1(0) truhfulqa-mc2(0) winogrande(5) gsm8k(5) hellaswag(10) mmlu(5) Average
SFT 0.5290 0.8253 0.3121 0.4494 0.7230 0.1372 0.7619 0.4479 0.5232
SPIN-iter0 0.5360 0.8291 0.3439 0.5055 0.7348 0.1516 0.7735 0.4478 0.5403
SPIN-iter1 0.5333 0.8312 0.3427 0.5066 0.7269 0.1706 0.7727 0.4509 0.5419
SPIN-iter2 0.5418 0.8325 0.3476 0.5086 0.7167 0.1592 0.7718 0.4524 0.5413
SPIN-iter3 0.5461 0.8329 0.3439 0.5078 0.7151 0.1577 0.7714 0.4511 0.5408

Problems of SPIN - performance oscillation

zephyr-7b-sft-full

My Image

Llama-2-7b-ultrachat200k

My Image

Potential Methods

1. Use GPT to label the pair

Task arc-challenge(25) arc-easy(25) truhfulqa-mc1(0) truhfulqa-mc2(0) winogrande(5) gsm8k(5) hellaswag(10) mmlu(5) Average
Zephyr-SPIN-iter1 0.5853 0.8203 0.2901 0.4341 0.7601 0.3161 0.8172 0.5846 0.5760
GPT-Zephyr-SPIN-iter1 0.5939 0.8270 0.3133 0.4407 0.7672 0.3169 0.8229 0.5855 0.5834

2. Add noise

Task arc-challenge(25) arc-easy(25) truhfulqa-mc1(0) truhfulqa-mc2(0) winogrande(5) gsm8k(5) hellaswag(10) mmlu(5) Average
Zephyr-SPIN-iter1 0.5853 0.8203 0.2901 0.4341 0.7601 0.3161 0.8172 0.5846 0.5760
Noised-Zephyr-SPIN-iter1 0.5930 0.8258 0.3035 0.4469 0.7640 0.3275 0.8214 0.5880 0.5838

3. GPT-preference(threshold)

Task arc-challenge(25) arc-easy(25) truhfulqa-mc1(0) truhfulqa-mc2(0) winogrande(5) gsm8k(5) hellaswag(10) mmlu(5) Average
Zephyr-SPIN-iter0 0.5922 0.8266 0.3244 0.4615 0.768 0.2889 0.826 0.5901 0.5847
GPT-threshold(0)-Zephyr-SPIN-iter0 0.5998 0.8329 0.2681 0.3939 0.7735 0.3275 0.8274 0.58 0.5754
GPT-threshold(5)-Zephyr-SPIN-iter0 0.6007 0.8291 0.3195 0.4657 0.764 0.3086 0.8271 0.5848 0.5874

Feture Work - Combine the two ideas (adaptive judge or noise)

related to the reward plot

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published