-
-
Notifications
You must be signed in to change notification settings - Fork 48
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
78 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
# variational_circuit.py | ||
import numpy as np | ||
from qiskit import QuantumCircuit, Aer, execute | ||
from qiskit.visualization import plot_histogram | ||
from qiskit.quantum_info import Statevector | ||
from qiskit.algorithms import VQE | ||
from qiskit.algorithms.optimizers import SLSQP | ||
from qiskit.primitives import Sampler | ||
|
||
def create_variational_circuit(num_qubits, params): | ||
""" | ||
Create a parameterized variational circuit. | ||
Parameters: | ||
- num_qubits: Number of qubits in the circuit | ||
- params: List of parameters for the variational gates | ||
Returns: | ||
- QuantumCircuit: The constructed variational circuit | ||
""" | ||
circuit = QuantumCircuit(num_qubits) | ||
|
||
# Apply parameterized RY gates | ||
for i in range(num_qubits): | ||
circuit.ry(params[i], i) | ||
|
||
# Add entangling gates (CNOTs) | ||
for i in range(num_qubits - 1): | ||
circuit.cx(i, i + 1) | ||
|
||
return circuit | ||
|
||
def run_variational_algorithm(num_qubits, initial_params): | ||
""" | ||
Run a variational algorithm (e.g., VQE) using the variational circuit. | ||
Parameters: | ||
- num_qubits: Number of qubits in the circuit | ||
- initial_params: Initial parameters for the variational circuit | ||
Returns: | ||
- optimal_value: The minimum eigenvalue found | ||
- optimal_params: The optimal parameters for the variational circuit | ||
""" | ||
# Create a variational circuit | ||
circuit = create_variational_circuit(num_qubits, initial_params) | ||
|
||
# Define the optimizer | ||
optimizer = SLSQP(maxiter=100) | ||
|
||
# Create a VQE instance | ||
vqe = VQE(circuit, optimizer=optimizer, quantum_instance=Aer.get_backend('aer_simulator')) | ||
|
||
# Run VQE | ||
result = vqe.compute_minimum_eigenvalue() | ||
|
||
return result.eigenvalue, result.optimal_point | ||
|
||
def visualize_results(optimal_value, optimal_params): | ||
""" | ||
Visualize the results of the variational algorithm. | ||
Parameters: | ||
- optimal_value: The minimum eigenvalue found | ||
- optimal_params: The optimal parameters for the variational circuit | ||
""" | ||
print("Minimum Eigenvalue:", optimal_value) | ||
print("Optimal Parameters:", optimal_params) | ||
|
||
if __name__ == "__main__": | ||
num_qubits = 2 # Number of qubits for the variational circuit | ||
initial_params = np.random.rand(num_qubits) * np.pi # Random initial parameters | ||
|
||
# Run the variational algorithm | ||
optimal_value, optimal_params = run_variational_algorithm(num_qubits, initial_params) | ||
|
||
# Visualize the results | ||
visualize_results(optimal_value, optimal_params) |