Skip to content

Code release for "Learning to Exploit Invariances in Clinical Time-Series Data Using Sequence Transformer Networks" (Oh, Wang, Wiens), MLHC 2018. https://arxiv.org/abs/1808.06725

Notifications You must be signed in to change notification settings

MLD3/MLHC2018_SequenceTransformerNetworks

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 

Repository files navigation

MLHC2018_SequenceTransformerNetworks

Code for the experiments run in:
Jeeheh Oh, Jiaxuan Wang, Jenna Wiens. “Learning to Exploit Invariances in Clinical Time-Series Data Using Sequence Transformer Networks.” Machine Learning for Healthcare Conference, 2018.

SeqTN_functions.py

  • HP_search()
  • test()
  • train()
  • SeqTN() : Sequence Transformer Networks
  • CNN() : the baseline CNN

Data can be downloaded here: https://mimic.physionet.org/
Data can be preprocessed via code found here: https://github.com/YerevaNN/mimic3-benchmarks

About

Code release for "Learning to Exploit Invariances in Clinical Time-Series Data Using Sequence Transformer Networks" (Oh, Wang, Wiens), MLHC 2018. https://arxiv.org/abs/1808.06725

Topics

Resources

Stars

Watchers

Forks

Languages