Skip to content

Evaluation of CNN and Random Forest algorithms for wet snow detection in SAR image

Notifications You must be signed in to change notification settings

Matthieu-Gallet/CNN-WetSnow-CROCUS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 

Repository files navigation

CNN-WetSnow-CROCUS

1. Description

The project explore the capacity of Convolutional Neural Network (CNN) and Random Forest (RF) algorithms to detect wet snow in SAR (Sentinel-1) images. The dataset used can be found in: zenodo.org/record/8111485. This work will be presented at IGARSS 2023, the poster can be found in the folder poster.

2. Structure

.
├── README.md
├── cnn_wsd
│   ├── __init__.py
│   ├── architecture.py
│   ├── dataset_loader.py
│   ├── evaluate_cnn.py
│   ├── explore_cnn.py
│   ├── geo_tools.py
|   ├── img_processing.py
│   ├── map_predict_cnn.py
│   ├── metrics.py
│   ├── model_selection.py
│   └── utils.py
└── poster
    └── POSTER_IGARSS_23_V4.pdf

About

Evaluation of CNN and Random Forest algorithms for wet snow detection in SAR image

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages