conda create --name <env> --file requirements.txt
- https://drive.google.com/file/d/1CfomsX6qmdCLfFutptqrQnp1RlaJEpXh/view?usp=sharing
- extract and put the
/data
folder under the same root as/src
- Each dataset may have several subdatasets (most of them only have one)
|<dataset_root>
|dataset/
-|<subdataset_1>
-|<label_1>
-|<label_2>
-|<subdataset_2>
...
|pickled/
-|tensor_dict.pt
- The pickle file
tensor_dict.pt
has the following format:
{
'subdataset_1':{
'label_1':{
'image_tensors':np.array((N,3,224,224)), # N: image number
'input_ids':np.array(S), # S: token length of the filled template text
'attention_masks':np.array(S),
'template_input_ids':np.array(S_), # S_: token length of the un-filled template text
'template_attention_masks':np.array(S_),
},
'label_2':{
...
}
},
...
}
- ABO dataset contains an additional
label_to_text.json
file, which provides text template for each subdataset and label.
Dataset | dataset name (-i) | subdataset name (-d) |
---|---|---|
Clevr Counting | ClevrCounting |
counting |
Amazon Berkeley Objects (ABO) | ABO |
material |
Caltech-UCSD Birds 200 (CUB) | CUB |
classification |
Fungi | Fungi |
classification |
Mini-imagenet | mini |
classification |
run.sh
provided example code for performing training and meta-testing on our datasets.
Each model checkpoint dir contains two files:
step1.ckpt
: model checkpoint after training phasedev_test_results.json
: scores on each task configuration on dev and test set during meta-testing
- Here is an example snippet for loading
step1.ckpt
from multitask-finetuning/classical-finetuning/zeroshot models:
model = MultitaskFinetuneCLIP()
model = model.load_from_checkpoint(checkpoint_path="<path to log dir>/step1.ckpt")
- Here is an example snippet for loading
step1.ckpt
from fomaml models:
model = LightningCLIP()
model = l2l.algorithms.MAML(model, lr=1e-5 first_order=True)
model.load_state_dict(torch.load("<path to log dir>/step1.ckpt"))
- put your new dataset in the same format as provided dataset into
data/
- Specify
template_function
or the path tolabel_to_text
json file (an example file can be found in/data/ABO/label_to_text.json
) at line350
and355
indata.py
preprocess.sh
provides an example of runningdata.py
to create pickle file for your new dataset- add your dataset into
construct_dataset()
: line77
intrain.py
and line80
intrain_MAML.py
- modify
run.sh
to train and meta-test on your own dataset - refer to
train.py
andtrain_MAML.py
for default and tuning hyperparameters for each algorithm