Skip to content

Commit

Permalink
Merge pull request #201 from NLeSC/issue194-class_weight
Browse files Browse the repository at this point in the history
Issue194 class weight
  • Loading branch information
cwmeijer authored Dec 19, 2019
2 parents 6651e7b + 6a1e07b commit 588f231
Show file tree
Hide file tree
Showing 5 changed files with 59 additions and 9 deletions.
3 changes: 3 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,8 @@
# Change Log

## v2.1.0
- Add class weight support

## v2.0.1
- Fix documentation inconsistency

Expand Down
2 changes: 1 addition & 1 deletion CITATION.cff
Original file line number Diff line number Diff line change
Expand Up @@ -55,5 +55,5 @@ keywords:
license: "Apache-2.0"
message: "If you use this software, please cite it using these metadata."
title: "mcfly: deep learning for time series"
version: "2.0.1"
version: "2.1.0"
...
2 changes: 1 addition & 1 deletion mcfly/_version.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,4 +15,4 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
__version__ = '2.0.1'
__version__ = '2.1.0'
14 changes: 10 additions & 4 deletions mcfly/find_architecture.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@
def train_models_on_samples(X_train, y_train, X_val, y_val, models,
nr_epochs=5, subset_size=100, verbose=True, outputfile=None,
model_path=None, early_stopping=False,
batch_size=20, metric='accuracy'):
batch_size=20, metric='accuracy', class_weight=None):
"""
Given a list of compiled models, this function trains
them all on a subset of the train data. If the given size of the subset is
Expand Down Expand Up @@ -76,6 +76,8 @@ def train_models_on_samples(X_train, y_train, X_val, y_val, models,
nr of samples per batch
metric : str
metric to store in the history object
class_weight: dict, optional
Dictionary containing class weights (example: {0: 0.5, 1: 2.})
Returns
----------
Expand All @@ -86,7 +88,6 @@ def train_models_on_samples(X_train, y_train, X_val, y_val, models,
val_losses : list of floats
validation losses of the models
"""
# if subset_size is smaller then X_train, this will work fine
X_train_sub = X_train[:subset_size, :, :]
y_train_sub = y_train[:subset_size, :]

Expand All @@ -112,7 +113,8 @@ def train_models_on_samples(X_train, y_train, X_val, y_val, models,
# see comment on subsize_set
validation_data=(X_val, y_val),
verbose=verbose,
callbacks=callbacks)
callbacks=callbacks,
class_weight=class_weight)
histories.append(history)

val_metrics.append(_get_from_history('val_' + metric_name, history.history)[-1])
Expand Down Expand Up @@ -198,6 +200,7 @@ def _cast_to_primitive_type(obj):
def find_best_architecture(X_train, y_train, X_val, y_val, verbose=True,
number_of_models=5, nr_epochs=5, subset_size=100,
outputpath=None, model_path=None, metric='accuracy',
class_weight=None,
**kwargs):
"""
Tries out a number of models on a subsample of the data,
Expand Down Expand Up @@ -230,6 +233,8 @@ def find_best_architecture(X_train, y_train, X_val, y_val, verbose=True,
File location to store the model results
model_path: str, optional
Directory to save the models as HDF5 files
class_weight: dict, optional
Dictionary containing class weights (example: {0: 0.5, 1: 2.})
metric: str, optional
metric that is used to evaluate the model on the validation set.
See https://keras.io/metrics/ for possible metrics
Expand Down Expand Up @@ -262,7 +267,8 @@ def find_best_architecture(X_train, y_train, X_val, y_val, verbose=True,
verbose=verbose,
outputfile=outputpath,
model_path=model_path,
metric=metric)
metric=metric,
class_weight=class_weight)
best_model_index = np.argmax(val_accuracies)
best_model, best_params, best_model_type = models[best_model_index]
knn_acc = kNN_accuracy(
Expand Down
47 changes: 44 additions & 3 deletions tests/test_find_architecture.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,15 +2,14 @@
import numpy as np
from pytest import approx, raises
from tensorflow.keras.utils import to_categorical
import tensorflow as tf
import os
import unittest

from test_tools import safe_remove


class FindArchitectureSuite(unittest.TestCase):
"""Basic test cases."""

class FindArchitectureBasicSuite(unittest.TestCase):
def test_kNN_accuracy_1(self):
"""
The accuracy for this single-point dataset should be 1.
Expand Down Expand Up @@ -79,10 +78,51 @@ def train_models_on_samples_empty(self):
batch_size=20, metric='accuracy')
assert len(histories) == 0

@unittest.skip('Needs tensorflow API v2. Also, quite a slow test of 15s.')
def test_find_best_architecture_with_class_weights(self):
"""Model should not ignore tiny class with huge class weight. Note that this test is non-deterministic,
even though a seed was set. Note2 that this test is very slow, taking up 40% of all mcfly test time."""
tf.random.set_seed(1234) # Needs tensorflow API v2

X_train, y_train = _create_2_class_labeled_dataset(1, 999) # very unbalanced
X_val, y_val = _create_2_class_labeled_dataset(1, 99)
X_test, y_test = _create_2_class_labeled_dataset(10, 10)
class_weight = {0: 2, 1: 0.002}

best_model, best_params, best_model_type, knn_acc = find_architecture.find_best_architecture(
X_train, y_train, X_val, y_val, verbose=False, subset_size=1000,
number_of_models=5, nr_epochs=1, model_type='CNN', class_weight=class_weight)

probabilities = best_model.predict_proba(X_test)
predicted = probabilities.argmax(axis=1)
np.testing.assert_array_equal(predicted, y_test.argmax(axis=1))

def setUp(self):
np.random.seed(1234)


def _create_2_class_labeled_dataset(num_samples_class_a, num_samples_class_b):
X = _create_2_class_noisy_data(num_samples_class_a, num_samples_class_b)
y = _create_2_class_labels(num_samples_class_a, num_samples_class_b)
return X, y


def _create_2_class_noisy_data(num_samples_class_a, num_samples_class_b):
num_channels = 1
num_time_steps = 10
data_class_a = np.zeros((num_samples_class_a, num_time_steps, num_channels))
data_class_b = np.ones((num_samples_class_b, num_time_steps, num_channels))
signal = np.vstack((data_class_a, data_class_b))
noise = 0.1 * np.random.randn(signal.shape[0], signal.shape[1], signal.shape[2])
return signal + noise


def _create_2_class_labels(num_samples_class_a, num_samples_class_b):
labels_class_a = np.zeros(num_samples_class_a)
labels_class_b = np.ones(num_samples_class_b)
return to_categorical(np.hstack((labels_class_a, labels_class_b)))


class MetricNamingSuite(unittest.TestCase):
@staticmethod
def test_get_metric_name_accuracy():
Expand Down Expand Up @@ -144,6 +184,7 @@ def test_accuracy_get_from_history_none_raise():
with raises(KeyError):
find_architecture._get_from_history('accuracy', history_history)


class HistoryStoringSuite(unittest.TestCase):
def test_store_train_history_as_json(self):
"""The code should produce a json file."""
Expand Down

0 comments on commit 588f231

Please sign in to comment.