Skip to content

OpenFogStack/temporal-location-prediction

 
 

Repository files navigation

Predicting Temporal Aspects of Movement for Predictive Replication in Fog Environments

This simulation is a fork from the original prp-simulation extending it by the temporal prediction, thus being able to simulate spatio-temporal prediction models.

Research

If you use this software in a publication, please cite it as:

Text

E. Balitzki, T. Pfandzelter and D. Bermbach, Predicting Temporal Aspects of Movement for Predictive Replication in Fog Environments, arXiv:2306.00575, 2023.

BibTeX

@unpublished{balitzki2023predicting,
    author = "Balitzki, Emil and Pfandzelter, Tobias and Bermbach, David",
    title = "Predicting Temporal Aspects of Movement for Predictive Replication in Fog Environments",
    month = jun,
    year = 2023,
    Eprint = "2306.00575"
}

For a full list of publications, please see our website.

Structure

  • geolife-data: location of the raw Geolife Data
  • geolife-data-transformed: populated by the me.mbe.prp.TransformGeolife main method in the test module
  • src code
    • main: code of the framework, algorithms, etc.
      • algorithms
      • base: helper methods
      • core: framework
      • data
      • metrics
      • network
      • nodes
    • test: code for the evaluation
  • stats-out: evaluation results saved here
  • analysis: python files for analysis and plotting of the results

Setup

  1. Clone repository
  2. Setup gradle
  3. Copy the Geolife Data into the geolife-data folder (copy the whole Data folder).
  4. Run the me.mbe.prp.TransformGeolife main method in the test module
  5. Run the evaluations in me.mbe.prp.geolife.Evaluation
  6. Results can be found in the stats-out directory (The results folder already contains the results files, in order to create new ones, delete the existing ones.)

Algorithms

Spatio-temporal algorithms (our proposed models)

  • Baseline
    • me.mbe.algorithms.Alg000: Store data on all nodes at all times.
    • me.mbe.algorithms.Alg001: Store data only on closest node when application active.
    • me.mbe.algorithms.nextnodepred.Alg004: Variable Order Markov Model.
    • me.mbe.algorithms.nextnodepred.Alg012: Fusion Multi Order Markov Model.
  • T-VOMM
    • me.mbe.algorithms.nextnodepred.AlgT04: Temporal Variable Order Markov Model: Not mentioned in the thesis
  • T-FOMM

The not-finished complex network implementation can be found in the complex_network branch.

Spatial-only algorithms (original thesis)

  • Baseline
    • me.mbe.algorithms.Alg000: Store data on all nodes at all times.
    • me.mbe.algorithms.Alg001: Store data only on closest node when application active.
  • Next Node Prediction
    • me.mbe.algorithms.nextnodepred.Alg003: (Multi Order) Markov Model.
    • me.mbe.algorithms.nextnodepred.Alg004: Variable Order Markov Model.
    • me.mbe.algorithms.nextnodepred.Alg008: Store also on some neighboring nodes: Not mentioned in the original thesis
    • me.mbe.algorithms.nextnodepred.Alg012: Fusion Multi Order Markov Model.
  • Startup Prediction
    • me.mbe.algorithms.startuppred.Alg011: Store for short pauses.
    • me.mbe.algorithms.startuppred.Alg013: Do not store anything after shutdown: Used together with the algorithms for next node prediction: Not mentioned explicitly in the original thesis
    • me.mbe.algorithms.startuppred.Alg014: Store if short pause predicted.
    • me.mbe.algorithms.startuppred.Alg015: Clustering of startup times for long pauses: Not mentioned explicitly in the original thesis, just as a side note.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Kotlin 83.0%
  • Python 17.0%