This simulation is a fork from the original prp-simulation extending it by the temporal prediction, thus being able to simulate spatio-temporal prediction models.
If you use this software in a publication, please cite it as:
E. Balitzki, T. Pfandzelter and D. Bermbach, Predicting Temporal Aspects of Movement for Predictive Replication in Fog Environments, arXiv:2306.00575, 2023.
@unpublished{balitzki2023predicting,
author = "Balitzki, Emil and Pfandzelter, Tobias and Bermbach, David",
title = "Predicting Temporal Aspects of Movement for Predictive Replication in Fog Environments",
month = jun,
year = 2023,
Eprint = "2306.00575"
}
For a full list of publications, please see our website.
- geolife-data: location of the raw Geolife Data
- geolife-data-transformed: populated by the
me.mbe.prp.TransformGeolife
main method in the test module - src code
- main: code of the framework, algorithms, etc.
- algorithms
- base: helper methods
- core: framework
- data
- metrics
- network
- nodes
- test: code for the evaluation
- main: code of the framework, algorithms, etc.
- stats-out: evaluation results saved here
- analysis: python files for analysis and plotting of the results
- Clone repository
- Setup gradle
- Copy the Geolife Data into the geolife-data folder (copy the whole
Data
folder). - Run the
me.mbe.prp.TransformGeolife
main method in the test module - Run the evaluations in
me.mbe.prp.geolife.Evaluation
- Results can be found in the
stats-out
directory (The results folder already contains the results files, in order to create new ones, delete the existing ones.)
- Baseline
me.mbe.algorithms.Alg000
: Store data on all nodes at all times.me.mbe.algorithms.Alg001
: Store data only on closest node when application active.me.mbe.algorithms.nextnodepred.Alg004
: Variable Order Markov Model.me.mbe.algorithms.nextnodepred.Alg012
: Fusion Multi Order Markov Model.
- T-VOMM
me.mbe.algorithms.nextnodepred.AlgT04
: Temporal Variable Order Markov Model: Not mentioned in the thesis
- T-FOMM
me.mbe.algorithms.nextnodepred.AlgT012
: Temporal Fusion Multi Order Markov Model with multiple temporal models: Percentiles (PCTL), Temporal Discretization (TD) and Holt Winter’s Exponential Smoothing (HWES)
The not-finished complex network implementation can be found in the complex_network
branch.
- Baseline
me.mbe.algorithms.Alg000
: Store data on all nodes at all times.me.mbe.algorithms.Alg001
: Store data only on closest node when application active.
- Next Node Prediction
me.mbe.algorithms.nextnodepred.Alg003
: (Multi Order) Markov Model.me.mbe.algorithms.nextnodepred.Alg004
: Variable Order Markov Model.me.mbe.algorithms.nextnodepred.Alg008
: Store also on some neighboring nodes: Not mentioned in the original thesisme.mbe.algorithms.nextnodepred.Alg012
: Fusion Multi Order Markov Model.
- Startup Prediction
me.mbe.algorithms.startuppred.Alg011
: Store for short pauses.me.mbe.algorithms.startuppred.Alg013
: Do not store anything after shutdown: Used together with the algorithms for next node prediction: Not mentioned explicitly in the original thesisme.mbe.algorithms.startuppred.Alg014
: Store if short pause predicted.me.mbe.algorithms.startuppred.Alg015
: Clustering of startup times for long pauses: Not mentioned explicitly in the original thesis, just as a side note.