Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Translate deep_learning_nlp_tutorial.rst 번역 #887

Merged
merged 4 commits into from
Oct 15, 2024
Merged
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
59 changes: 30 additions & 29 deletions beginner_source/deep_learning_nlp_tutorial.rst
Original file line number Diff line number Diff line change
@@ -1,28 +1,28 @@
Deep Learning for NLP with Pytorch
PyTorch를 이용한 NLP를 위한 딥러닝
**********************************
**Author**: `Robert Guthrie <https://github.com/rguthrie3/DeepLearningForNLPInPytorch>`_

This tutorial will walk you through the key ideas of deep learning
programming using Pytorch. Many of the concepts (such as the computation
graph abstraction and autograd) are not unique to Pytorch and are
relevant to any deep learning toolkit out there.

I am writing this tutorial to focus specifically on NLP for people who
have never written code in any deep learning framework (e.g, TensorFlow,
Theano, Keras, Dynet). It assumes working knowledge of core NLP
problems: part-of-speech tagging, language modeling, etc. It also
assumes familiarity with neural networks at the level of an intro AI
class (such as one from the Russel and Norvig book). Usually, these
courses cover the basic backpropagation algorithm on feed-forward neural
networks, and make the point that they are chains of compositions of
linearities and non-linearities. This tutorial aims to get you started
writing deep learning code, given you have this prerequisite knowledge.

Note this is about *models*, not data. For all of the models, I just
create a few test examples with small dimensionality so you can see how
the weights change as it trains. If you have some real data you want to
try, you should be able to rip out any of the models from this notebook
and use them on it.
**저자**: `Robert Guthrie <https://github.com/rguthrie3/DeepLearningForNLPInPytorch>`_
**번역**: `오수연 <github.com/oh5221>`_

이 튜토리얼은 PyTorch를 사용한 딥러닝 프로그램의 주요 아이디어에 대해
차근차근 살펴볼 것입니다. 많은 개념들(계산 그래프 추상화 및
autograd)은 PyTorch에서만 제공하는 것이 아니며, 이미 공개된
딥러닝 toolkit과 관련이 있습니다.

이 튜토리얼은 딥러닝 프레임워크(예: Tensorflow, Theano, Keras,
Dynet)에서 어떤 코드도 작성해 본 적이 없는 사람들을
위한 NLP에 특별히 초점을 맞추어 작성하였습니다. 튜토리얼을 위해 NLP의
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

NLP 분야라고 하는게 조금 더 자연스러울거 같습니다

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

피드백 감사합니다! 두 부분 전부 수정하였습니다 :)
rip out에 맞는 용어가 무엇이 있을지 고민을 많이 했었는데 ㅎㅎ "가져다가"가 정말 찰떡이네요!
NLP도 번역 시에는 고려하지 못했는데 확실히 더 자연스러워진 것 같습니다. 🥰

핵심 문제에 대한 실무 지식이 필요합니다: 품사 태깅, 언어 모델링 등. 또한
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

여기서 working knowledge는 '기본적인 지식' 정도의 의미인 것 같습니다!

AI 입문 수업 수준 (Russel과 Norvig 책에 나오는 것 같은) 신경망 친숙도가 필요합니다. 일반적으로,
feed-forward 신경망에 대한 기본적인 역전파 알고리즘을
다루고, 선형성과 비선형성의 연쇄적인 구성이라는 점을
강조합니다. 이 튜토리얼은 이런 필수적인 지식이 있는 상태에서
딥러닝 코드 작성을 시작하는 것을 목표로 합니다.

이 튜토리얼이 데이터가 아니라 *모델* 에 관한 것임에 주의해야 합니다. 모든
모델에 있어, 단지 작은 차원을 가진 몇 가지 예제만을 만들어 훈련 시
가중치 변화를 볼 수 있게 합니다. 만약 실제 데이터를 갖고 있다면,
이 노트북의 모델 중 하나를 뽑아
사용해 볼 수 있을 것입니다.
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

이 노트북의 모델 중 하나를 가져다가 사용해본다고 의역하는게 조금 더 자연스러울거 같습니다



.. toctree::
Expand All @@ -36,19 +36,20 @@ and use them on it.


.. galleryitem:: /beginner/nlp/pytorch_tutorial.py
:intro: All of deep learning is computations on tensors, which are generalizations of a matrix that can be
:intro: 모든 딥러닝은 행렬의 일반화인 Tensor에 대한 계산입니다.

.. galleryitem:: /beginner/nlp/deep_learning_tutorial.py
:intro: Deep learning consists of composing linearities with non-linearities in clever ways. The introduction of non-linearities allows
:intro: 딥러닝은 선형성과 비선형성을 영리하게 조합하는 것으로 구성됩니다. 비선형성 도입의 소개

.. galleryitem:: /beginner/nlp/word_embeddings_tutorial.py
:intro: Word embeddings are dense vectors of real numbers, one per word in your vocabulary. In NLP, it is almost always the case that your features are
:intro: 단어 임베딩은 실수의 dense vector로, vocabulary(단어 집합)의 단어 당 하나씩입니다. NLP에서는 거의 feature 대부분의 경우에 해당합니다.

.. galleryitem:: /beginner/nlp/sequence_models_tutorial.py
:intro: At this point, we have seen various feed-forward networks. That is, there is no state maintained by the network at all.
:intro: 이 시점에서, 다양한 feed-forward 네트워크를 보았습니다. 즉, 네트워크에 의해 유지되는 상태가 없습니다.


.. galleryitem:: /beginner/nlp/advanced_tutorial.py
:intro: Dynamic versus Static Deep Learning Toolkits. Pytorch is a *dynamic* neural network kit.
:intro: 동적 vs. 정적 딥러닝 Toolkits. PyTorch는 *동적* 신경망 키트입니다.


.. raw:: html
Expand Down