Skip to content

Commit

Permalink
Merge pull request #3 from kaklise/parmest-covariance
Browse files Browse the repository at this point in the history
Minor changes to parmest for covariance estimation
  • Loading branch information
adowling2 authored Jun 3, 2020
2 parents 865c9dc + dbe6ece commit 4d5d731
Show file tree
Hide file tree
Showing 9 changed files with 26 additions and 31 deletions.
11 changes: 11 additions & 0 deletions doc/OnlineDocs/contributed_packages/parmest/api.rst
Original file line number Diff line number Diff line change
Expand Up @@ -3,11 +3,22 @@
API
============

parmest
---------
.. automodule:: pyomo.contrib.parmest.parmest
:members:
:undoc-members:
:show-inheritance:

scenariocreator
------------------
.. automodule:: pyomo.contrib.parmest.scenariocreator
:members:
:undoc-members:
:show-inheritance:

graphics
---------
.. automodule:: pyomo.contrib.parmest.graphics
:members:
:undoc-members:
Expand Down
9 changes: 9 additions & 0 deletions doc/OnlineDocs/contributed_packages/parmest/covariance.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
Covariance Matrix Estimation
=================================

If the optional argument ``calc_cov=True`` is specified for :class:`~pyomo.contrib.parmest.parmest.Estimator.theta_est`, parmest will calculate the covariance matrix :math:`V_{\theta}` as follows:

.. math::
V_{\theta} = 2 \sigma^2 H^{-1}
This formula assumes all measurement errors are independent and identically distributed with variance :math:`\sigma^2`. :math:`H^{-1}` is the inverse of the Hessian matrix for a unweighted sum of least squares problem. Currently, the covariance approximation is only valid if the objective given to parmest is the sum of squared error. Moreover, parmest approximates the variance of the measurement errors as :math:`\sigma^2 = \frac{1}{n-l} \sum e_i^2` where :math:`n` is the number of data points, :math:`l` is the number of fitted parameters, and :math:`e_i` is the residual for experiment :math:`i`.
2 changes: 1 addition & 1 deletion doc/OnlineDocs/contributed_packages/parmest/datarec.rst
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
.. _datarecsection:

Data Reconciliation using parmest
Data Reconciliation
=================================

The method :class:`~pyomo.contrib.parmest.parmest.Estimator.theta_est`
Expand Down
11 changes: 1 addition & 10 deletions doc/OnlineDocs/contributed_packages/parmest/driver.rst
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
.. _driversection:

Parameter Estimation using parmest
Parameter Estimation
==================================

Parameter Estimation using parmest requires a Pyomo model, experimental
Expand Down Expand Up @@ -145,12 +145,3 @@ expression which is used to define "SecondStageCost". The objective
function can be used to customize data points and weights that are used
in parameter estimation.

Covariance matrix estimation
----------------------------

If the optional argument ``calc_cov=True`` is specified for ``theta_est()``, parmest will calculate the covariance matrix :math:`V_{\theta}` as follows:

.. math::
V_{\theta} = 2 \sigma^2 H^{-1}
This formula assumes all measurement errors are independent and identically distributed with variance :math:`\sigma^2`. :math:`H^{-1}` is the inverse of the Hessian matrix for a unweighted sum of least squares problem. Currently, the covariance approximation is only valid if the objective given to parmest is the sum of squared error. Moreover, parmest approximates the variance of the measurement errors as :math:`\sigma^2 = \frac{1}{n-l} \sum e_i^2` where :math:`n` is the number of data points, :math:`l` is the number of fitted parameters, and :math:`e_i` is the residual for experiment :math:`i`.
3 changes: 2 additions & 1 deletion doc/OnlineDocs/contributed_packages/parmest/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -12,11 +12,12 @@ confidence regions and subsequent creation of scenarios for PySP.
installation.rst
driver.rst
datarec.rst
covariance.rst
scencreate.rst
graphics.rst
examples.rst
parallel.rst
api.rst
scencreate.rst

Indices and Tables
------------------
Expand Down
12 changes: 0 additions & 12 deletions doc/OnlineDocs/contributed_packages/parmest/scencreate.rst
Original file line number Diff line number Diff line change
Expand Up @@ -8,9 +8,6 @@ object, which has methods to add ``ParmestScen`` scenario objects to a
``ScenarioSet`` object, which can write them to a csv file or output them
via an iterator method.

Example
-------

This example is in the semibatch subdirectory of the examples directory in
the file ``scencreate.py``. It creates a csv file with scenarios that
correspond one-to-one with the experiments used as input data. It also
Expand All @@ -23,12 +20,3 @@ scenarios to the screen, accessing them via the ``ScensItator`` a ``print``
.. note::
This example may produce an error message your version of Ipopt is not based
on a good linear solver.


API
---

.. automodule:: pyomo.contrib.parmest.scenariocreator
:members:
:undoc-members:
:show-inheritance:
Original file line number Diff line number Diff line change
Expand Up @@ -44,9 +44,8 @@ def SSE(model, data):
parmest.pairwise_plot(bootstrap_theta, title='Bootstrap theta')
parmest.pairwise_plot(bootstrap_theta, theta, 0.8, ['MVN', 'KDE', 'Rect'],
title='Bootstrap theta with confidence regions')
'''

### Likelihood ratio test
'''
asym = np.arange(10, 30, 2)
rate = np.arange(0, 1.5, 0.1)
theta_vals = pd.DataFrame(list(product(asym, rate)), columns=theta_names)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -8,14 +8,10 @@
# This software is distributed under the 3-clause BSD License.
# ___________________________________________________________________________

import numpy as np
import pandas as pd
from itertools import product
import pyomo.contrib.parmest.parmest as parmest
from rooney_biegler import rooney_biegler_model

### Parameter estimation

# Vars to estimate
theta_names = ['asymptote', 'rate_constant']

Expand Down
2 changes: 1 addition & 1 deletion pyomo/contrib/parmest/parmest.py
Original file line number Diff line number Diff line change
Expand Up @@ -780,7 +780,7 @@ def theta_est(self, solver="ef_ipopt", return_values=[], bootlist=None, calc_cov
assert isinstance(bootlist, (type(None), list))

return self._Q_opt(solver=solver, return_values=return_values,
bootlist=bootlist, calc_cov)
bootlist=bootlist, calc_cov=calc_cov)


def theta_est_bootstrap(self, bootstrap_samples, samplesize=None,
Expand Down

0 comments on commit 4d5d731

Please sign in to comment.