-
-
Notifications
You must be signed in to change notification settings - Fork 393
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
135 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,135 @@ | ||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
import argparse | ||
import math | ||
import time | ||
from typing import Any, Dict, List, Union | ||
|
||
import cv2 | ||
import numpy as np | ||
|
||
from rapidocr_onnxruntime.utils import OrtInferSession, read_yaml | ||
|
||
from .utils import ( | ||
CTCLabelDecode, | ||
TextRecognizerOutput, | ||
) | ||
|
||
|
||
class TextRecognizer: | ||
def __init__(self, config: Dict[str, Any]): | ||
self.session = OrtInferSession(config) | ||
|
||
character = None | ||
if self.session.have_key(): | ||
character = self.session.get_character_list() | ||
|
||
character_path = config.get("rec_keys_path", None) | ||
self.postprocess_op = CTCLabelDecode( | ||
character=character, character_path=character_path | ||
) | ||
|
||
self.rec_batch_num = config["rec_batch_num"] | ||
self.rec_image_shape = config["rec_img_shape"] | ||
|
||
def __call__( | ||
self, | ||
img_list: Union[np.ndarray, List[np.ndarray]], | ||
return_word_box: bool = False, | ||
) -> TextRecognizerOutput: | ||
if isinstance(img_list, np.ndarray): | ||
img_list = [img_list] | ||
|
||
# Calculate the aspect ratio of all text bars | ||
width_list = [img.shape[1] / float(img.shape[0]) for img in img_list] | ||
|
||
# Sorting can speed up the recognition process | ||
indices = np.argsort(np.array(width_list)) | ||
|
||
img_num = len(img_list) | ||
rec_res = [("", 0.0)] * img_num | ||
|
||
batch_num = self.rec_batch_num | ||
elapse = 0 | ||
for beg_img_no in range(0, img_num, batch_num): | ||
end_img_no = min(img_num, beg_img_no + batch_num) | ||
|
||
# Parameter Alignment for PaddleOCR | ||
imgC, imgH, imgW = self.rec_image_shape[:3] | ||
max_wh_ratio = imgW / imgH | ||
wh_ratio_list = [] | ||
for ino in range(beg_img_no, end_img_no): | ||
h, w = img_list[indices[ino]].shape[0:2] | ||
wh_ratio = w * 1.0 / h | ||
max_wh_ratio = max(max_wh_ratio, wh_ratio) | ||
wh_ratio_list.append(wh_ratio) | ||
|
||
norm_img_batch = [] | ||
for ino in range(beg_img_no, end_img_no): | ||
norm_img = self.resize_norm_img(img_list[indices[ino]], max_wh_ratio) | ||
norm_img_batch.append(norm_img[np.newaxis, :]) | ||
norm_img_batch = np.concatenate(norm_img_batch).astype(np.float32) | ||
|
||
starttime = time.time() | ||
preds = self.session(norm_img_batch)[0] | ||
line_results, word_results = self.postprocess_op( | ||
preds, | ||
return_word_box, | ||
wh_ratio_list=wh_ratio_list, | ||
max_wh_ratio=max_wh_ratio, | ||
) | ||
|
||
for rno, one_res in enumerate(line_results): | ||
rec_res[indices[beg_img_no + rno]] = (one_res, word_results[rno]) | ||
elapse += time.time() - starttime | ||
|
||
all_line_results, all_word_results = list(zip(*rec_res)) | ||
return TextRecognizerOutput(all_line_results, all_word_results, elapse) | ||
|
||
def resize_norm_img(self, img: np.ndarray, max_wh_ratio: float) -> np.ndarray: | ||
img_channel, img_height, img_width = self.rec_image_shape | ||
assert img_channel == img.shape[2] | ||
|
||
img_width = int(img_height * max_wh_ratio) | ||
|
||
h, w = img.shape[:2] | ||
ratio = w / float(h) | ||
if math.ceil(img_height * ratio) > img_width: | ||
resized_w = img_width | ||
else: | ||
resized_w = int(math.ceil(img_height * ratio)) | ||
|
||
resized_image = cv2.resize(img, (resized_w, img_height)) | ||
resized_image = resized_image.astype("float32") | ||
resized_image = resized_image.transpose((2, 0, 1)) / 255 | ||
resized_image -= 0.5 | ||
resized_image /= 0.5 | ||
|
||
padding_im = np.zeros((img_channel, img_height, img_width), dtype=np.float32) | ||
padding_im[:, :, 0:resized_w] = resized_image | ||
return padding_im | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--image_path", type=str, help="image_dir|image_path") | ||
parser.add_argument("--config_path", type=str, default="config.yaml") | ||
args = parser.parse_args() | ||
|
||
config = read_yaml(args.config_path) | ||
text_recognizer = TextRecognizer(config) | ||
|
||
img = cv2.imread(args.image_path) | ||
rec_res, predict_time = text_recognizer(img) | ||
print(f"rec result: {rec_res}\t cost: {predict_time}s") |