-
Notifications
You must be signed in to change notification settings - Fork 85
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
96 changed files
with
3,815 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
DUMMY1 | ||
DUMMY2 | ||
DUMMY3 | ||
logs | ||
__pycache__ | ||
.ipynb_checkpoints | ||
.*.swp | ||
|
||
build | ||
*.c | ||
monotonic_align/monotonic_align | ||
/.vs/vits/FileContentIndex | ||
configs/dracu_japanese_base2.json | ||
configs/tolove_japanese_base2.json | ||
|
||
.idea |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
# How to use | ||
(Suggestion) Python == 3.7 | ||
|
||
Only Japanese datasets can be used for fine-tuning in this repo. | ||
## Clone this repository | ||
```sh | ||
git clone https://github.com/SayaSS/vits-finetuning.git | ||
``` | ||
## Install requirements | ||
```sh | ||
pip install -r requirements.txt | ||
``` | ||
## Download pre-trained model | ||
- [G_0.pth](https://huggingface.co/spaces/sayashi/vits-uma-genshin-honkai/resolve/main/model/G_0.pth) | ||
- [D_0.pth](https://huggingface.co/spaces/sayashi/vits-uma-genshin-honkai/resolve/main/model/D_0.pth) | ||
- Edit "model_dir"(line 152) in utils.py | ||
- Put pre-trained models in the "model_dir"/checkpoints | ||
|
||
## Create datasets | ||
- Speaker ID should be between 0-803. | ||
- About 50 audio-text pairs will suffice and 100-600 epochs could have quite good performance, but more data may be better. | ||
- Resample all audio to 22050Hz, 16-bit, mono wav files. | ||
``` | ||
path/to/XXX.wav|speaker id|transcript | ||
``` | ||
- Example | ||
|
||
``` | ||
dataset/001.wav|10|こんにちは。 | ||
``` | ||
For complete examples, please see filelists/miyu_train.txt and filelists/miyu_val.txt. | ||
|
||
## Preprocess | ||
```sh | ||
python preprocess.py --filelists path/to/filelist_train.txt path/to/filelist_val.txt | ||
``` | ||
Edit "training_files" and "validation_files" in configs/config.json | ||
## Build monotonic alignment search | ||
```sh | ||
cd monotonic_align | ||
python setup.py build_ext --inplace | ||
cd .. | ||
``` | ||
## Train | ||
```sh | ||
# Mutiple speakers | ||
python train_ms.py -c configs/config.json -m checkpoints | ||
``` | ||
## Inference | ||
### Online | ||
See [inference.ipynb](inference.ipynb) | ||
### Offline | ||
See [MoeGoe](https://github.com/CjangCjengh/MoeGoe) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,303 @@ | ||
import copy | ||
import math | ||
import numpy as np | ||
import torch | ||
from torch import nn | ||
from torch.nn import functional as F | ||
|
||
import commons | ||
import modules | ||
from modules import LayerNorm | ||
|
||
|
||
class Encoder(nn.Module): | ||
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs): | ||
super().__init__() | ||
self.hidden_channels = hidden_channels | ||
self.filter_channels = filter_channels | ||
self.n_heads = n_heads | ||
self.n_layers = n_layers | ||
self.kernel_size = kernel_size | ||
self.p_dropout = p_dropout | ||
self.window_size = window_size | ||
|
||
self.drop = nn.Dropout(p_dropout) | ||
self.attn_layers = nn.ModuleList() | ||
self.norm_layers_1 = nn.ModuleList() | ||
self.ffn_layers = nn.ModuleList() | ||
self.norm_layers_2 = nn.ModuleList() | ||
for i in range(self.n_layers): | ||
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size)) | ||
self.norm_layers_1.append(LayerNorm(hidden_channels)) | ||
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout)) | ||
self.norm_layers_2.append(LayerNorm(hidden_channels)) | ||
|
||
def forward(self, x, x_mask): | ||
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) | ||
x = x * x_mask | ||
for i in range(self.n_layers): | ||
y = self.attn_layers[i](x, x, attn_mask) | ||
y = self.drop(y) | ||
x = self.norm_layers_1[i](x + y) | ||
|
||
y = self.ffn_layers[i](x, x_mask) | ||
y = self.drop(y) | ||
x = self.norm_layers_2[i](x + y) | ||
x = x * x_mask | ||
return x | ||
|
||
|
||
class Decoder(nn.Module): | ||
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs): | ||
super().__init__() | ||
self.hidden_channels = hidden_channels | ||
self.filter_channels = filter_channels | ||
self.n_heads = n_heads | ||
self.n_layers = n_layers | ||
self.kernel_size = kernel_size | ||
self.p_dropout = p_dropout | ||
self.proximal_bias = proximal_bias | ||
self.proximal_init = proximal_init | ||
|
||
self.drop = nn.Dropout(p_dropout) | ||
self.self_attn_layers = nn.ModuleList() | ||
self.norm_layers_0 = nn.ModuleList() | ||
self.encdec_attn_layers = nn.ModuleList() | ||
self.norm_layers_1 = nn.ModuleList() | ||
self.ffn_layers = nn.ModuleList() | ||
self.norm_layers_2 = nn.ModuleList() | ||
for i in range(self.n_layers): | ||
self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init)) | ||
self.norm_layers_0.append(LayerNorm(hidden_channels)) | ||
self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout)) | ||
self.norm_layers_1.append(LayerNorm(hidden_channels)) | ||
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True)) | ||
self.norm_layers_2.append(LayerNorm(hidden_channels)) | ||
|
||
def forward(self, x, x_mask, h, h_mask): | ||
""" | ||
x: decoder input | ||
h: encoder output | ||
""" | ||
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype) | ||
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1) | ||
x = x * x_mask | ||
for i in range(self.n_layers): | ||
y = self.self_attn_layers[i](x, x, self_attn_mask) | ||
y = self.drop(y) | ||
x = self.norm_layers_0[i](x + y) | ||
|
||
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask) | ||
y = self.drop(y) | ||
x = self.norm_layers_1[i](x + y) | ||
|
||
y = self.ffn_layers[i](x, x_mask) | ||
y = self.drop(y) | ||
x = self.norm_layers_2[i](x + y) | ||
x = x * x_mask | ||
return x | ||
|
||
|
||
class MultiHeadAttention(nn.Module): | ||
def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False): | ||
super().__init__() | ||
assert channels % n_heads == 0 | ||
|
||
self.channels = channels | ||
self.out_channels = out_channels | ||
self.n_heads = n_heads | ||
self.p_dropout = p_dropout | ||
self.window_size = window_size | ||
self.heads_share = heads_share | ||
self.block_length = block_length | ||
self.proximal_bias = proximal_bias | ||
self.proximal_init = proximal_init | ||
self.attn = None | ||
|
||
self.k_channels = channels // n_heads | ||
self.conv_q = nn.Conv1d(channels, channels, 1) | ||
self.conv_k = nn.Conv1d(channels, channels, 1) | ||
self.conv_v = nn.Conv1d(channels, channels, 1) | ||
self.conv_o = nn.Conv1d(channels, out_channels, 1) | ||
self.drop = nn.Dropout(p_dropout) | ||
|
||
if window_size is not None: | ||
n_heads_rel = 1 if heads_share else n_heads | ||
rel_stddev = self.k_channels**-0.5 | ||
self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) | ||
self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) | ||
|
||
nn.init.xavier_uniform_(self.conv_q.weight) | ||
nn.init.xavier_uniform_(self.conv_k.weight) | ||
nn.init.xavier_uniform_(self.conv_v.weight) | ||
if proximal_init: | ||
with torch.no_grad(): | ||
self.conv_k.weight.copy_(self.conv_q.weight) | ||
self.conv_k.bias.copy_(self.conv_q.bias) | ||
|
||
def forward(self, x, c, attn_mask=None): | ||
q = self.conv_q(x) | ||
k = self.conv_k(c) | ||
v = self.conv_v(c) | ||
|
||
x, self.attn = self.attention(q, k, v, mask=attn_mask) | ||
|
||
x = self.conv_o(x) | ||
return x | ||
|
||
def attention(self, query, key, value, mask=None): | ||
# reshape [b, d, t] -> [b, n_h, t, d_k] | ||
b, d, t_s, t_t = (*key.size(), query.size(2)) | ||
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3) | ||
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) | ||
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) | ||
|
||
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1)) | ||
if self.window_size is not None: | ||
assert t_s == t_t, "Relative attention is only available for self-attention." | ||
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s) | ||
rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings) | ||
scores_local = self._relative_position_to_absolute_position(rel_logits) | ||
scores = scores + scores_local | ||
if self.proximal_bias: | ||
assert t_s == t_t, "Proximal bias is only available for self-attention." | ||
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype) | ||
if mask is not None: | ||
scores = scores.masked_fill(mask == 0, -1e4) | ||
if self.block_length is not None: | ||
assert t_s == t_t, "Local attention is only available for self-attention." | ||
block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length) | ||
scores = scores.masked_fill(block_mask == 0, -1e4) | ||
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s] | ||
p_attn = self.drop(p_attn) | ||
output = torch.matmul(p_attn, value) | ||
if self.window_size is not None: | ||
relative_weights = self._absolute_position_to_relative_position(p_attn) | ||
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s) | ||
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings) | ||
output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t] | ||
return output, p_attn | ||
|
||
def _matmul_with_relative_values(self, x, y): | ||
""" | ||
x: [b, h, l, m] | ||
y: [h or 1, m, d] | ||
ret: [b, h, l, d] | ||
""" | ||
ret = torch.matmul(x, y.unsqueeze(0)) | ||
return ret | ||
|
||
def _matmul_with_relative_keys(self, x, y): | ||
""" | ||
x: [b, h, l, d] | ||
y: [h or 1, m, d] | ||
ret: [b, h, l, m] | ||
""" | ||
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1)) | ||
return ret | ||
|
||
def _get_relative_embeddings(self, relative_embeddings, length): | ||
max_relative_position = 2 * self.window_size + 1 | ||
# Pad first before slice to avoid using cond ops. | ||
pad_length = max(length - (self.window_size + 1), 0) | ||
slice_start_position = max((self.window_size + 1) - length, 0) | ||
slice_end_position = slice_start_position + 2 * length - 1 | ||
if pad_length > 0: | ||
padded_relative_embeddings = F.pad( | ||
relative_embeddings, | ||
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]])) | ||
else: | ||
padded_relative_embeddings = relative_embeddings | ||
used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position] | ||
return used_relative_embeddings | ||
|
||
def _relative_position_to_absolute_position(self, x): | ||
""" | ||
x: [b, h, l, 2*l-1] | ||
ret: [b, h, l, l] | ||
""" | ||
batch, heads, length, _ = x.size() | ||
# Concat columns of pad to shift from relative to absolute indexing. | ||
x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]])) | ||
|
||
# Concat extra elements so to add up to shape (len+1, 2*len-1). | ||
x_flat = x.view([batch, heads, length * 2 * length]) | ||
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]])) | ||
|
||
# Reshape and slice out the padded elements. | ||
x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:] | ||
return x_final | ||
|
||
def _absolute_position_to_relative_position(self, x): | ||
""" | ||
x: [b, h, l, l] | ||
ret: [b, h, l, 2*l-1] | ||
""" | ||
batch, heads, length, _ = x.size() | ||
# padd along column | ||
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]])) | ||
x_flat = x.view([batch, heads, length**2 + length*(length -1)]) | ||
# add 0's in the beginning that will skew the elements after reshape | ||
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]])) | ||
x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:] | ||
return x_final | ||
|
||
def _attention_bias_proximal(self, length): | ||
"""Bias for self-attention to encourage attention to close positions. | ||
Args: | ||
length: an integer scalar. | ||
Returns: | ||
a Tensor with shape [1, 1, length, length] | ||
""" | ||
r = torch.arange(length, dtype=torch.float32) | ||
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1) | ||
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0) | ||
|
||
|
||
class FFN(nn.Module): | ||
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False): | ||
super().__init__() | ||
self.in_channels = in_channels | ||
self.out_channels = out_channels | ||
self.filter_channels = filter_channels | ||
self.kernel_size = kernel_size | ||
self.p_dropout = p_dropout | ||
self.activation = activation | ||
self.causal = causal | ||
|
||
if causal: | ||
self.padding = self._causal_padding | ||
else: | ||
self.padding = self._same_padding | ||
|
||
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size) | ||
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size) | ||
self.drop = nn.Dropout(p_dropout) | ||
|
||
def forward(self, x, x_mask): | ||
x = self.conv_1(self.padding(x * x_mask)) | ||
if self.activation == "gelu": | ||
x = x * torch.sigmoid(1.702 * x) | ||
else: | ||
x = torch.relu(x) | ||
x = self.drop(x) | ||
x = self.conv_2(self.padding(x * x_mask)) | ||
return x * x_mask | ||
|
||
def _causal_padding(self, x): | ||
if self.kernel_size == 1: | ||
return x | ||
pad_l = self.kernel_size - 1 | ||
pad_r = 0 | ||
padding = [[0, 0], [0, 0], [pad_l, pad_r]] | ||
x = F.pad(x, commons.convert_pad_shape(padding)) | ||
return x | ||
|
||
def _same_padding(self, x): | ||
if self.kernel_size == 1: | ||
return x | ||
pad_l = (self.kernel_size - 1) // 2 | ||
pad_r = self.kernel_size // 2 | ||
padding = [[0, 0], [0, 0], [pad_l, pad_r]] | ||
x = F.pad(x, commons.convert_pad_shape(padding)) | ||
return x |
Oops, something went wrong.