Skip to content

PyTorch implementation of Rainbow: Combining Improvements in Deep Reinforcement Learning

Notifications You must be signed in to change notification settings

SimonNick/rainbow

 
 

Repository files navigation

Rainbow

An implementation of Rainbow in PyTorch. A lot of codes are borrowed from baselines, NoisyNet-A3C, RL-Adventure.

Papers

List of papers are:

  1. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529. http://doi.org/10.1038/nature14236

  2. van Hasselt, H., Guez, A., & Silver, D. (2015, September 22). Deep Reinforcement Learning with Double Q-learning. arXiv.org.

  3. Schaul, T., Quan, J., Antonoglou, I., & Silver, D. (2015, November 19). Prioritized Experience Replay. arXiv.org.

  4. Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M., & de Freitas, N. (2015, November 20). Dueling Network Architectures for Deep Reinforcement Learning. arXiv.org.

  5. Fortunato, M., Azar, M. G., Piot, B., Menick, J., Osband, I., Graves, A., et al. (2017, July 1). Noisy Networks for Exploration. arXiv.org.

  6. Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., et al. (2017, October 6). Rainbow: Combining Improvements in Deep Reinforcement Learning. arXiv.org.

Requirements

torch
torchvision
numpy
tensorboardX
opencv-python

Examples

Training:

python main.py \
--max-frames 12000 \
--env Breakout-ram-v4 \
--save-model "test" 

Evaluation:

python main.py \
--evaluate \
--env Breakout-ram-v4 \
--load-model "dqn-test"

Acknowledgements

About

PyTorch implementation of Rainbow: Combining Improvements in Deep Reinforcement Learning

Topics

Resources

Stars

Watchers

Forks

Languages

  • Jupyter Notebook 83.6%
  • Python 16.4%