Skip to content

Commit

Permalink
Merge pull request #216 from SylphAI-Inc/main
Browse files Browse the repository at this point in the history
[v0.2.3.beta.1] Optimize any llm task pipeline & RAG playbook v1
  • Loading branch information
Sylph-AI authored Sep 17, 2024
2 parents 82a7878 + 030c128 commit 9b7038b
Show file tree
Hide file tree
Showing 57 changed files with 2,516 additions and 1,063 deletions.
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -36,3 +36,4 @@ index.faiss
*.svg
# ignore the softlink to adalflow cache
*.adalflow
extend/
11 changes: 9 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@
<a href="https://adalflow.sylph.ai/apis/components/components.model_client.html">Models</a> |
<a href="https://adalflow.sylph.ai/apis/components/components.retriever.html">Retrievers</a> |
<a href="https://adalflow.sylph.ai/apis/components/components.agent.html">Agents</a> |
<a href="https://adalflow.sylph.ai/tutorials/evaluation.html"> LLM evaluation</a> |
<a href="https://adalflow.sylph.ai/use_cases/question_answering.html">Trainer & Optimizers</a>
<p>
</h4>
Expand Down Expand Up @@ -212,7 +213,7 @@ AdalFlow full documentation available at [adalflow.sylph.ai](https://adalflow.sy

# AdalFlow: A Tribute to Ada Lovelace

AdalFlow is named in honor of [Ada Lovelace](https://en.wikipedia.org/wiki/Ada_Lovelace), the pioneering female mathematician who first recognized that machines could do more than just calculations. As a female-led team, we aim to inspire more women to enter the AI field.
AdalFlow is named in honor of [Ada Lovelace](https://en.wikipedia.org/wiki/Ada_Lovelace), the pioneering female mathematician who first recognized that machines could do more than just calculations. As a team led by female founder, we aim to inspire more women to enter the AI field.

# Contributors

Expand All @@ -238,6 +239,12 @@ Many existing works greatly inspired AdalFlow library! Here is a non-exhaustive
month = {7},
year = {2024},
doi = {10.5281/zenodo.12639531},
url = {https://github.com/SylphAI-Inc/LightRAG}
url = {https://github.com/SylphAI-Inc/AdalFlow}
}
```

# Star History

[![Star History Chart](https://api.star-history.com/svg?repos=SylphAI-Inc/AdalFlow&type=Date)](https://star-history.com/#SylphAI-Inc/AdalFlow&Date)
<!--
<a href="https://trendshift.io/repositories/11559" target="_blank"><img src="https://trendshift.io/api/badge/repositories/11559" alt="SylphAI-Inc%2FAdalFlow | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a> -->
13 changes: 13 additions & 0 deletions adalflow/CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,16 @@
## [0.2.3.beta.1] - 2024-09-17
### Removed
- Removed /reasoning as COT is just too simple to be a separate module.
### Fixed
- datasets/hotpotqa.py
- eval/answer_match_acc: added lower() to both the gt and pred in the fuzzy match. On hotpotqa, the accuracy goes from 0.15 to 0.4 on one test.
- eval/functional: fixed the `confidence_interval` to be able to customize the confidence level.

### Added
Auto-grad system to support retriever and any component:
- `GradComponent` has a default `forward` which wraps the `call` to handle the auto-grad automatically for any component that has subclassed `GradComponent`.
- Clarified the `ParamType` to include `input`, `output`, `hyperparam` instead of following PyTorch's tensor and Parameter design pattern.
- `TraceGraph` of the `Parameter` at `draw_graph` to support `ParamType`.
## [0.2.2] - 2024-09-09
### Added
- `get_cache_path`, instead of print out the cache path all the time, we add a ``get_cache_path`` to get the cache path.
Expand Down
4 changes: 3 additions & 1 deletion adalflow/adalflow/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
__version__ = "0.2.2"
__version__ = "0.2.3.beta.1"

from adalflow.core.component import Component, fun_to_component
from adalflow.core.container import Sequential
Expand All @@ -24,6 +24,7 @@
ListParser,
BooleanParser,
)
from adalflow.core.retriever import Retriever
from adalflow.components.output_parsers import (
YamlOutputParser,
JsonOutputParser,
Expand Down Expand Up @@ -70,6 +71,7 @@
"ModelClient",
"Generator",
"Embedder",
"Retriever",
"Parameter",
"AdalComponent",
"Trainer",
Expand Down
1 change: 0 additions & 1 deletion adalflow/adalflow/components/reasoning/__init__.py

This file was deleted.

98 changes: 0 additions & 98 deletions adalflow/adalflow/components/reasoning/chain_of_thought.py

This file was deleted.

18 changes: 0 additions & 18 deletions adalflow/adalflow/core/README.md

This file was deleted.

20 changes: 13 additions & 7 deletions adalflow/adalflow/core/base_data_class.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,15 @@
represent_ordereddict,
)


__all__ = [
"DataClass",
"DataClassFormatType",
"required_field",
"ExcludeType",
"IncludeType",
"check_adal_dataclass",
"DynamicDataClassFactory",
]
logger = logging.getLogger(__name__)


Expand Down Expand Up @@ -125,7 +133,8 @@ class DataClass:
Overall, we have a unified class method :meth:`format_str` to generate formatted output based on the type of operation and class/instance context.
note::
You do not need to use our format, overwrite any method in the subclass to fit in your needs.
1. Avoid using Optional[Type] for the type of fields, as dataclass already distingushes between optional and required fields using default value.
2. If you need to customize, you can subclass and overwrite any method to fit your needs.
Loading data:
Expand Down Expand Up @@ -176,8 +185,8 @@ class MyOutputs(DataClass):
# name: John Doe
"""
__input_fields__ = []
__output_fields__ = []
__input_fields__: List[str] = []
__output_fields__: List[str] = []

def __post_init__(self):

Expand Down Expand Up @@ -687,9 +696,6 @@ def format_example_str(
else:
raise ValueError(f"Unsupported format type: {format_type}")

# TODO:support Generic[Type[T]] for the type of fields
# it will automatically use __type_var_map__ attribute


def check_adal_dataclass(data_class: Type) -> None:
"""Check if the provided class is a valid dataclass for the AdalFlow framework.
Expand Down
7 changes: 2 additions & 5 deletions adalflow/adalflow/core/db.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@
# TODO: DB clarity can be further improved
@dataclass
class LocalDB(Generic[T], Component):
__doc__ = r"""LocalDB with in-memory CRUD operations, data transformation/processing pipelines, and persistence.
__doc__ = """LocalDB with in-memory CRUD operations, data transformation/processing pipelines, and persistence.
LocalDB is highly flexible.
1. It can store any type of data items in the `items` attribute.
Expand Down Expand Up @@ -126,10 +126,7 @@ def length(self):
def get_transformer_keys(self) -> List[str]:
return list(self.transformed_items.keys())

# def get_transformed_data(self, key: str) -> List[U]:
# """Get the transformed items by key."""
# return self.transformed_items[key]

# TODO: combine this to fetch_transformed_items
def get_transformed_data(
self, key: str, filter_fn: Callable[[Any], bool] = lambda x: True
) -> List[U]:
Expand Down
1 change: 1 addition & 0 deletions adalflow/adalflow/core/embedder.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@
from adalflow.core.component import Component
import adalflow.core.functional as F

__all__ = ["Embedder", "BatchEmbedder"]

log = logging.getLogger(__name__)

Expand Down
29 changes: 19 additions & 10 deletions adalflow/adalflow/core/generator.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,9 @@
OBJECTIVE_INSTRUCTION_CHAIN,
)

__all__ = ["Generator", "BackwardEngine", "create_teacher_generator"]


log = logging.getLogger(__name__)

PromptArgType = Dict[str, Union[str, Parameter]]
Expand All @@ -66,7 +69,8 @@ class Generator(GradComponent, CachedEngine, CallbackManager):
trainable_params (Optional[List[str]], optional): The list of trainable parameters. Defaults to [].
Note:
The output_processors will be applied to the string output of the model completion. And the result will be stored in the data field of the output. And we encourage you to only use it to parse the response to data format you will use later.
The output_processors will be applied to the string output of the model completion. And the result will be stored in the data field of the output.
And we encourage you to only use it to parse the response to data format you will use later.
"""

model_type: ModelType = ModelType.LLM
Expand Down Expand Up @@ -264,6 +268,7 @@ def _compose_model_kwargs(self, **model_kwargs) -> Dict:
combined_model_kwargs.update(model_kwargs)
return combined_model_kwargs

# TODO: use prompt_kwargs as users are already familiar with it
def print_prompt(self, **kwargs) -> str:
return self.prompt.print_prompt(**kwargs)

Expand Down Expand Up @@ -334,7 +339,8 @@ def _model_client_call(self, api_kwargs: Dict, use_cache: bool = False) -> Any:
raise e

##############################################################################################################
### Forward and backwards, and teacher generator are for training
### Forward, backwards, teacher generator, create demo data instance,
# are for training and backpropagation
##############################################################################################################

def create_demo_data_instance(
Expand All @@ -343,6 +349,10 @@ def create_demo_data_instance(
output: GeneratorOutput,
id: Optional[str] = None,
):
r"""Automatically create a demo data instance from the input and output of the generator.
Used to trace the demos for the demo paramter in the prompt_kwargs.
Part of the few-shot learning.
"""
from adalflow.core.base_data_class import DynamicDataClassFactory

# map the input fields
Expand All @@ -352,7 +362,10 @@ def create_demo_data_instance(
)

for k, v in input_prompt_kwargs.items():
demo_data[k] = v
if isinstance(v, Parameter):
demo_data[k] = v.map_to_successor(self)
else:
demo_data[k] = v
# map the output fields
for key, value in demo_data_class_output_mapping.items():
demo_data[key] = value(output)
Expand Down Expand Up @@ -473,15 +486,10 @@ def forward(
raise ValueError(
"ID is required for tracing. Please pass it to your Geneartor call."
)
input_prompt_kwargs = {
k: v.data if isinstance(v, Parameter) else v
for k, v in prompt_kwargs.items()
}

demo = self.create_demo_data_instance(
input_prompt_kwargs,
prompt_kwargs,
output,
# self._demo_data_class_output_mapping,
id=id,
)
demo_param.add_to_trace(demo, is_teacher=self.teacher_mode)
Expand Down Expand Up @@ -842,7 +850,8 @@ def _extra_repr(self) -> str:

def to_dict(self) -> Dict[str, Any]:
r"""Convert the generator to a dictionary."""
# exclude default functions
# TODO: exclude default functions
return super().to_dict()

@staticmethod
def failure_message_to_backward_engine(
Expand Down
Loading

0 comments on commit 9b7038b

Please sign in to comment.