forked from ggerganov/llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
llama : add AWQ for llama, llama2, mpt, and mistral models (ggerganov…
…#4593) * update: awq support llama-7b model * update: change order * update: benchmark results for llama2-7b * update: mistral 7b v1 benchmark * update: support 4 models * fix: Readme * update: ready for PR * update: readme * fix: readme * update: change order import * black * format code * update: work for bot mpt and awqmpt * update: readme * Rename to llm_build_ffn_mpt_awq * Formatted other files * Fixed params count * fix: remove code * update: more detail for mpt * fix: readme * fix: readme * update: change folder architecture * fix: common.cpp * fix: readme * fix: remove ggml_repeat * update: cicd * update: cicd * uppdate: remove use_awq arg * update: readme * llama : adapt plamo to new ffn ggml-ci --------- Co-authored-by: Trần Đức Nam <[email protected]> Co-authored-by: Le Hoang Anh <[email protected]> Co-authored-by: Georgi Gerganov <[email protected]>
- Loading branch information
1 parent
879b690
commit f679349
Showing
8 changed files
with
443 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
# AWQ: Activation-aware Weight Quantization for LLM - version apply to llamacpp | ||
[[Paper](https://arxiv.org/abs/2306.00978)][[Original Repo](https://github.com/mit-han-lab/llm-awq)][[Easy-to-use Repo](https://github.com/casper-hansen/AutoAWQ)] | ||
|
||
**Supported models:** | ||
|
||
- [X] LLaMA | ||
- [x] LLaMA 2 | ||
- [X] MPT | ||
- [X] Mistral AI v0.1 | ||
- [ ] Bloom | ||
- [ ] Mixtral MoE | ||
|
||
**TODO:** | ||
- [x] Update version work with both MPT and MPT-AWQ model | ||
- [ ] Add OPT model | ||
- [ ] Add Bloom model | ||
- [ ] Add Mixtral MoE | ||
- [ ] Support w3, w2 | ||
|
||
|
||
## Contents | ||
|
||
- [Install](##Install) | ||
- [Convert](##Convert) | ||
- [Quantize](##Quantize) | ||
- [Test](##Test) | ||
- [Benchmark](##Benchmark) | ||
- [Results](##Results) | ||
|
||
## Install | ||
Install requirements | ||
```bash | ||
pip install -r requirements.txt | ||
``` | ||
Get the pre-computed AWQ search results for multiple model families, including LLaMA, LLaMA2, MPT, OPT | ||
```bash | ||
git clone https://huggingface.co/datasets/mit-han-lab/awq-model-zoo awq_cache | ||
``` | ||
|
||
## Convert | ||
Example for llama model | ||
```bash | ||
# For llama7b and llama2 models | ||
python convert.py models/llama-7b/ --awq-path awq_cache/llama-7b-w4-g128.pt --outfile models/llama_7b_fp16.gguf | ||
# For mistral and mpt models | ||
python convert-hf-to-gguf.py models/mpt-7b/ --awq-path awq_cache/llama-7b-w4-g128.pt --outfile models/mpt_7b_fp16.gguf | ||
``` | ||
|
||
## Quantize | ||
```bash | ||
# We only benchmark and confirm the results on q4_0, q4_1, and q2_k types. | ||
./quantize models/llama_7b_fp16.gguf models/llama_7b_q4_0.gguf q4_0 | ||
``` | ||
|
||
## Test | ||
```bash | ||
# For all models. | ||
./build/bin/main -m models/llama_7b_q4_0.gguf -n 128 --prompt "Once upon a time" | ||
``` | ||
|
||
## Benchmark | ||
The perplexity measurements in table above are done against the `wikitext2` test dataset (https://paperswithcode.com/dataset/wikitext-2), with context length of 512. | ||
```bash | ||
# For llama and llama2, and mistral models. | ||
./perplexity -m models/llama_7b_q4_0.gguf -f datasets/wikitext-2-raw/wiki.test.raw | ||
``` | ||
|
||
## Results | ||
Results are run on OpenBLAS (CPU) and CuBLAS (GPU) for fair comparison | ||
We use three types of llamacpp quantization methods to work with our version, including q4_0, q4_1, and q2_k | ||
|
||
### Llama 7B (Build with OpenBLAS) | ||
|
||
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K | | ||
|-----------:|--------------|-------:|-------:|-------:|-------:| | ||
|Llama 7B | perplexity | 5.9066 | 6.1214 | 6.0643 | 6.5808 | | ||
|Llama 7B | file size | 12.9G | 3.5G | 3.9G | 2.7G | | ||
|Llama 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 | | ||
|AWQ-LLama 7B| perplexity | 5.9175 | 6.0252 | 5.9987 | 6.3692 | | ||
|AWQ-LLama 7B| file size | 12.9G | 3.5G | 3.9G | 2.7G | | ||
|AWQ-LLama 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 | | ||
|
||
|
||
### Llama2 7B (Build with CuBLAS) | ||
|
||
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K | | ||
|------------:|--------------|-------:|-------:|-------:|-------:| | ||
|Llama2 7B | perplexity | 5.8664 | 6.0260 | 6.0656 | 6.4496 | | ||
|Llama2 7B | file size | 12.9G | 3.5G | 3.9G | 2.7G | | ||
|Llama2 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 | | ||
|AWQ-LLama2 7B| perplexity | 5.8801 | 6.0054 | 5.9849 | 6.3650 | | ||
|AWQ-LLama2 7B| file size | 12.9G | 3.5G | 3.9G | 2.7G | | ||
|AWQ-LLama2 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 | | ||
|
||
|
||
### Mistral 7B v0.1 (Build with CuBLAS) | ||
|
||
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K | | ||
|-------------:|--------------|-------:|-------:|-------:|-------:| | ||
|Mistral 7B | perplexity | 5.6931 | 5.8202 | 5.8268 | 6.1645 | | ||
|Mistral 7B | file size | 14.5G | 4.1G | 4.5G | 3.1G | | ||
|Mistral 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 | | ||
|AWQ-Mistral 7B| perplexity | 5.6934 | 5.8020 | 5.7691 | 6.0426 | | ||
|AWQ-Mistral 7B| file size | 14.5G | 4.1G | 4.5G | 3.1G | | ||
|AWQ-Mistral 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 | | ||
|
||
### MPT 7B (Build with OpenBLAS) | ||
|
||
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K | | ||
|---------:|--------------|-------:|-------:|-------:|--------:| | ||
|MPT 7B | perplexity | 8.4369 | 8.7956 | 8.6265 | 11.4913 | | ||
|MPT 7B | file size | 13.7G | 3.9G | 4.3G | 2.8G | | ||
|MPT 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 | | ||
|AWQ-MPT 7B| perplexity | 8.4944 | 8.7053 | 8.6750 | 10.2873| | ||
|AWQ-MPT 7B| file size | 13.7G | 3.9G | 4.3G | 2.8G | | ||
|AWQ-MPT 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,254 @@ | ||
""" | ||
Implements the AWQ for llama.cpp use cases. | ||
Original paper: https://arxiv.org/abs/2306.00978 | ||
This code is based on versions of the AWQ implementation found in the following repositories: | ||
* https://github.com/mit-han-lab/llm-awq | ||
* https://github.com/casper-hansen/AutoAWQ | ||
""" | ||
|
||
import os | ||
import torch | ||
import torch.nn as nn | ||
|
||
from transformers import AutoModelForCausalLM, AutoConfig | ||
from transformers.models.bloom.modeling_bloom import BloomGelu | ||
from transformers.models.llama.modeling_llama import LlamaRMSNorm | ||
from transformers.activations import GELUActivation | ||
|
||
|
||
class ScaledActivation(nn.Module): | ||
""" | ||
ScaledActivation module wraps an existing activation function and applies a | ||
scale factor to its output. | ||
Args: | ||
module (nn.Module): The activation function to be scaled. | ||
scales (torch.Tensor): A tensor of size (num_features,) containing the initial | ||
scale factors for each feature. | ||
Returns: | ||
torch.Tensor: The scaled output of the activation function. | ||
""" | ||
|
||
def __init__(self, module, scales): | ||
super().__init__() | ||
self.act = module | ||
self.scales = nn.Parameter(scales.data) | ||
|
||
def forward(self, x): | ||
return self.act(x) / self.scales.view(1, 1, -1).to(x.device) | ||
|
||
|
||
def set_op_by_name(layer, name, new_module): | ||
""" | ||
Set the new module for given module's name. | ||
Args: | ||
layer (nn.Module): The layer in which to replace the submodule. | ||
name (str): The path to the submodule to be replaced, using dot notation | ||
to access nested modules. | ||
new_module (nn.Module): The new module to replace the existing one. | ||
""" | ||
levels = name.split(".") | ||
if len(levels) > 1: | ||
mod_ = layer | ||
for l_idx in range(len(levels) - 1): | ||
if levels[l_idx].isdigit(): | ||
mod_ = mod_[int(levels[l_idx])] | ||
else: | ||
mod_ = getattr(mod_, levels[l_idx]) | ||
setattr(mod_, levels[-1], new_module) | ||
else: | ||
setattr(layer, name, new_module) | ||
|
||
|
||
def get_op_by_name(module, op_name): | ||
""" | ||
Retrieves a submodule within a given layer based on its name. | ||
Args: | ||
module (nn.Module): The layer containing the submodule to find. | ||
op_name (str): The name of the submodule. | ||
Returns: | ||
nn.Module: The requested submodule found within the given layer. | ||
Raises: | ||
ValueError: If the specified submodule cannot be found within the layer. | ||
""" | ||
for name, m in module.named_modules(): | ||
if name == op_name: | ||
return m | ||
raise ValueError(f"Cannot find op {op_name} in module {module}") | ||
|
||
|
||
@torch.no_grad() | ||
def scale_ln_fcs(ln, fcs, scales): | ||
""" | ||
Scales the weights of a LayerNorm and a list of fully-connected layers proportionally. | ||
Args: | ||
ln (nn.LayerNorm): The LayerNorm module to be scaled. | ||
fcs (List[nn.Linear]): A list of fully-connected layers to be scaled. | ||
scales (torch.Tensor): A 1D tensor of size (num_features,). | ||
""" | ||
|
||
if not isinstance(fcs, list): | ||
fcs = [fcs] | ||
|
||
scales = scales.to(ln.weight.device) | ||
|
||
ln.weight.div_(scales) | ||
if hasattr(ln, "bias") and ln.bias is not None: | ||
ln.bias.div_(scales) | ||
|
||
for fc in fcs: | ||
fc.weight.mul_(scales.view(1, -1)) | ||
|
||
for p in ln.parameters(): | ||
assert torch.isnan(p).sum() == 0 | ||
for fc in fcs: | ||
for p in fc.parameters(): | ||
assert torch.isnan(p).sum() == 0 | ||
|
||
|
||
@torch.no_grad() | ||
def scale_fc_fc(fc1, fc2, scales): | ||
""" | ||
Scales the weights of two fully-connected layers in a specific pattern. | ||
Args: | ||
fc1 (nn.Linear): The first fully-connected layer to be scaled. | ||
fc2 (nn.Linear): The second fully-connected layer to be scaled. | ||
scales (torch.Tensor): A 1D tensor of size (num_features,). | ||
""" | ||
assert isinstance(fc1, nn.Linear) | ||
assert isinstance(fc2, nn.Linear) | ||
|
||
scales = scales.to(fc1.weight.device) | ||
|
||
fc1.weight[-scales.size(0):].div_(scales.view(-1, 1)) | ||
if fc1.bias is not None: | ||
fc1.bias.div_(scales.view(-1)) | ||
|
||
fc2.weight.mul_(scales.view(1, -1)) | ||
|
||
for p in fc1.parameters(): | ||
assert torch.isnan(p).sum() == 0 | ||
for p in fc2.parameters(): | ||
assert torch.isnan(p).sum() == 0 | ||
|
||
|
||
@torch.no_grad() | ||
def scale_gelu_fc(gelu, fc, scales): | ||
""" | ||
Scales the weight of a GELU activation and a fully-connected layer proportionally. | ||
Args: | ||
gelu (Union[nn.GELU, BloomGelu, GELUActivation]): The GELU activation module to be scaled. | ||
fc (nn.Linear): The fully-connected layer to be scaled. | ||
scales (torch.Tensor): A 1D tensor of size (num_features,). | ||
Raises: | ||
TypeError: If the `gelu` module is not of type `nn.GELU`, `BloomGelu`, or `GELUActivation`. | ||
TypeError: If the `fc` module is not of type `nn.Linear`. | ||
""" | ||
assert isinstance(gelu, (nn.GELU, BloomGelu, GELUActivation)) | ||
assert isinstance(fc, nn.Linear) | ||
|
||
fc.weight.mul_(scales.view(1, -1).to(fc.weight.device)) | ||
|
||
for p in fc.parameters(): | ||
assert torch.isnan(p).sum() == 0 | ||
|
||
|
||
def apply_scale(module, scales_list, input_feat_dict=None): | ||
""" | ||
Applies different scaling strategies to layers based on their type and hierarchy within a given module. | ||
Args: | ||
module (nn.Module): The module containing the layers to be scaled. | ||
scales_list (List[Tuple[str, List[str], torch.Tensor]]): A list of tuples containing: | ||
* prev_op_name (str): The name of the preceding operation or module, | ||
relative to which the layers to be scaled are located. | ||
* layer_names (List[str]): A list of names of the layers to be scaled, relative to the preceding operation. | ||
* scales (torch.Tensor): A 1D tensor of size (num_features,) containing the scaling factors for each feature. | ||
input_feat_dict (Optional[Dict[str, torch.Tensor]]): A dictionary mapping layer names to their corresponding | ||
input features (optional). | ||
""" | ||
for prev_op_name, layer_names, scales in scales_list: | ||
prev_op = get_op_by_name(module, prev_op_name) | ||
layers = [get_op_by_name(module, name) for name in layer_names] | ||
|
||
prev_op.cuda() | ||
for layer in layers: | ||
layer.cuda() | ||
scales.cuda() | ||
|
||
if isinstance(prev_op, nn.Linear): | ||
assert len(layers) == 1 | ||
scale_fc_fc(prev_op, layers[0], scales) | ||
elif isinstance(prev_op, (nn.LayerNorm, LlamaRMSNorm)) or "rmsnorm" in str(prev_op.__class__).lower(): | ||
scale_ln_fcs(prev_op, layers, scales) | ||
elif isinstance(prev_op, (nn.GELU, BloomGelu, GELUActivation)): | ||
new_module = ScaledActivation(prev_op, scales) | ||
set_op_by_name(module, prev_op_name, new_module) | ||
scale_gelu_fc(prev_op, layers[0], scales) | ||
else: | ||
raise NotImplementedError(f"prev_op {type(prev_op)} not supported yet!") | ||
|
||
# apply the scaling to input feat if given; prepare it for clipping | ||
if input_feat_dict is not None: | ||
for layer_name in layer_names: | ||
inp = input_feat_dict[layer_name] | ||
inp.div_(scales.view(1, -1).to(inp.device)) | ||
|
||
prev_op.cpu() | ||
for layer in layers: | ||
layer.cpu() | ||
scales.cpu() | ||
|
||
|
||
@torch.no_grad() | ||
def apply_clip(module, clip_list): | ||
""" | ||
Applies element-wise clipping to the weight of a specific layer within a given module. | ||
Args: | ||
module (nn.Module): The module containing the layer to be clipped. | ||
clip_list (List[Tuple[str, torch.Tensor]]): A list of tuples containing: | ||
* name (str): The name of the layer to be clipped, relative to the root of the module. | ||
* max_val (torch.Tensor): A 1D or 2D tensor defining the upper bound for each element of the layer's weight. | ||
""" | ||
for name, max_val in clip_list: | ||
layer = get_op_by_name(module, name) | ||
layer.cuda() | ||
max_val = max_val.to(layer.weight.device) | ||
org_shape = layer.weight.shape | ||
layer.weight.data = layer.weight.data.reshape(*max_val.shape[:2], -1) | ||
layer.weight.data = torch.clamp(layer.weight.data, -max_val, max_val) | ||
layer.weight.data = layer.weight.data.reshape(org_shape) | ||
layer.cpu() | ||
|
||
|
||
def add_scale_weights(model_path, scale_path, tmp_path): | ||
""" | ||
Adds pre-computed Activation Weight Quantization (AWQ) results to a model, | ||
including scaling factors and clipping bounds. | ||
Args: | ||
model_path (str): Path to the pre-trained model to be equipped with AWQ. | ||
scale_path (str): Path to the AWQ scale factors (.pt file). | ||
tmp_path (str): Path to the temporary directory where the equipped model will be saved. | ||
""" | ||
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True) | ||
model = AutoModelForCausalLM.from_pretrained( | ||
model_path, config=config, trust_remote_code=True | ||
) | ||
model.eval() | ||
awq_results = torch.load(str(scale_path), map_location="cpu") | ||
apply_scale(model, awq_results["scale"]) | ||
apply_clip(model, awq_results["clip"]) | ||
model.save_pretrained(str(tmp_path)) | ||
os.system(f"cp {str(model_path)}/tokenizer* {str(tmp_path)}") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
torch>=2.0.0 | ||
transformers>=4.32.0 |
Oops, something went wrong.