Skip to content

Commit

Permalink
Support TensorFlow 2.11.0 (#287)
Browse files Browse the repository at this point in the history
* Support TensorFlow 2.11.0 and make it the minimum supported version
* Clean up the serialization helper utilities
  • Loading branch information
adriangb authored Dec 12, 2022
1 parent eb88be8 commit 32fc6af
Show file tree
Hide file tree
Showing 9 changed files with 135 additions and 150 deletions.
104 changes: 59 additions & 45 deletions .github/workflows/tests.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,10 @@ on:
# run every day at midnight
- cron: "0 0 * * *"

defaults:
run:
shell: bash

jobs:
Linting:
runs-on: ubuntu-latest
Expand All @@ -30,6 +34,7 @@ jobs:
strategy:
matrix:
python-version: ["3.7", "3.8", "3.9", "3.10"]
fail-fast: false

steps:
- uses: actions/checkout@v2
Expand All @@ -56,53 +61,54 @@ jobs:
- uses: codecov/codecov-action@v1

# TestDev:
# name: Ubuntu / Python ${{ matrix.python-version }} / TensorFlow Nightly / Scikit-Learn Nightly
# runs-on: ubuntu-latest
# strategy:
# matrix:
# python-version: ["3.10"]

# steps:
# - uses: actions/checkout@v2

# - name: Set up Python ${{ matrix.python-version }}
# uses: actions/setup-python@v2
# with:
# python-version: ${{ matrix.python-version }}

# - name: Install and Set Up Poetry
# run: |
# python -m pip install --upgrade poetry
# poetry config virtualenvs.in-project true
# poetry run python -m pip install --upgrade pip

# - name: Install Dependencies
# run: |
# poetry remove scikit-learn
# poetry install

# - name: Install Nightly Versions
# if: always()
# run: |
# poetry run python -m pip install -U tf-nightly
# poetry run python -m pip install -U scipy
# poetry run python -m pip install -U --pre --extra-index https://pypi.anaconda.org/scipy-wheels-nightly/simple scikit-learn

# - name: Test with pytest
# if: always()
# run: |
# poetry run python -m pip freeze
# poetry run python -m pytest -v --cov=scikeras --cov-report xml --color=yes

# - uses: codecov/codecov-action@v1
TestDev:
name: Ubuntu / Python ${{ matrix.python-version }} / TensorFlow Nightly / Scikit-Learn Nightly
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.10"]
fail-fast: false

steps:
- uses: actions/checkout@v2

- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}

- name: Install and Set Up Poetry
run: |
python -m pip install --upgrade poetry
poetry config virtualenvs.in-project true
poetry run python -m pip install --upgrade pip
- name: Install Dependencies
run: |
poetry remove scikit-learn
poetry install
- name: Install Nightly Versions
if: always()
run: |
poetry run python -m pip install -U tf-nightly
poetry run python -m pip install -U scipy
poetry run python -m pip install -U --pre --extra-index https://pypi.anaconda.org/scipy-wheels-nightly/simple scikit-learn
- name: Test with pytest
if: always()
run: |
poetry run python -m pip freeze
poetry run python -m pytest -v --cov=scikeras --cov-report xml --color=yes
- uses: codecov/codecov-action@v1

TestOldest:
name: Ubuntu / Python ${{ matrix.python-version }} / TF ${{ matrix.tf-version }} / Scikit-Learn ${{ matrix.sklearn-version }}
runs-on: ubuntu-latest
strategy:
matrix:
tf-version: [2.7.0]
tf-version: [2.11.0]
python-version: ["3.7", "3.9"]
sklearn-version: [1.0.0]

Expand All @@ -123,7 +129,9 @@ jobs:
- name: Install Dependencies
run: |
poetry install -E tensorflow
poetry add "scikit-learn==${{matrix.sklearn-version}}"
poetry run pip install \
"tensorflow==${{ matrix.tf-version }}" \
"scikit-learn==${{matrix.sklearn-version}}"
- name: Test with pytest
run: |
Expand All @@ -139,6 +147,7 @@ jobs:
matrix:
os: [MacOS, Windows] # test all OSs (except Ubuntu, which is already running other tests)
python-version: ["3.7", "3.10"] # test only the two extremes of supported Python versions
fail-fast: false

steps:
- uses: actions/checkout@v2
Expand All @@ -149,19 +158,24 @@ jobs:
python-version: ${{ matrix.python-version }}

- name: Install and Set Up Poetry
shell: bash
run: |
pip install --upgrade poetry
poetry config virtualenvs.in-project true
poetry run python -m pip install --upgrade pip
- name: Install Dependencies
# TF is sorta dropping support for Windows
# At the very least they are no longer suppporting GPU
# See https://github.com/tensorflow/tensorflow/releases/tag/v2.11.0
# and
# https://www.tensorflow.org/install/pip#windows-native
run: |
poetry install -E tensorflow
poetry install
poetry run pip install -U tensorflow-cpu
- name: Test with pytest
run: |
poetry run python -m pip freeze
poetry run pip freeze
poetry run python -m pytest -v --cov=scikeras --cov-report xml --color=yes
- uses: codecov/codecov-action@v1
10 changes: 6 additions & 4 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -27,22 +27,24 @@ license = "MIT"
name = "scikeras"
readme = "README.md"
repository = "https://github.com/adriangb/scikeras"
version = "0.9.0"
version = "0.10.0"

[tool.poetry.dependencies]
importlib-metadata = {version = ">=3", python = "<3.8"}
python = ">=3.7.0,<3.11.0"
scikit-learn = ">=1.0.0"
packaging = ">=0.21"
tensorflow = {version = ">=2.7.0", optional = true}
tensorflow-cpu = {version = ">=2.7.0", optional = true}
tensorflow = {version = ">=2.11.0", optional = true}
tensorflow-cpu = {version = ">=2.11.0", optional = true}
# https://github.com/grpc/grpc/issues/31492
grpcio = { version = "<1.50.0", markers = "python_version >= '3.10' and sys_platform == 'darwin'" }

[tool.poetry.extras]
tensorflow = ["tensorflow"]
tensorflow-cpu = ["tensorflow-cpu"]

[tool.poetry.dev-dependencies]
tensorflow = ">=2.7.0"
tensorflow = ">=2.11.0"
coverage = {extras = ["toml"], version = ">=6.4.2"}
insipid-sphinx-theme = ">=0.3.2"
ipykernel = ">=6.15.1"
Expand Down
137 changes: 50 additions & 87 deletions scikeras/_saving_utils.py
Original file line number Diff line number Diff line change
@@ -1,81 +1,57 @@
import os
import shutil
import tarfile
import tempfile

from contextlib import contextmanager
from io import BytesIO
from types import MethodType
from typing import Any, Callable, Dict, Hashable, Iterable, List, Tuple
from typing import Any, Callable, ContextManager, Dict, Hashable, Iterator, List, Tuple
from uuid import uuid4

import numpy as np
import tensorflow.keras as keras

from tensorflow import Variable
from tensorflow import io as tf_io
from tensorflow.keras.models import load_model


def _get_temp_folder() -> str:
@contextmanager
def _get_temp_folder() -> Iterator[str]:
if os.name == "nt":
# the RAM-based filesystem is not fully supported on
# Windows yet, we save to a temp folder on disk instead
return tempfile.mkdtemp()
tmp_dir = tempfile.mkdtemp()
try:
yield tmp_dir
finally:
shutil.rmtree(tmp_dir, ignore_errors=True)
else:
return f"ram://{tempfile.mkdtemp()}"


def _temp_create_all_weights(
self: keras.optimizers.Optimizer, var_list: Iterable[Variable]
):
"""A hack to restore weights in optimizers that use slots.
See https://tensorflow.org/api_docs/python/tf/keras/optimizers/Optimizer#slots_2
"""
self._create_all_weights_orig(var_list)
try:
self.set_weights(self._restored_weights)
except ValueError:
# Weights don't match, eg. when optimizer was pickled before any training
# or a completely new dataset is being used right after pickling
pass
delattr(self, "_restored_weights")
self._create_all_weights = self._create_all_weights_orig


def _restore_optimizer_weights(
optimizer: keras.optimizers.Optimizer, weights: List[np.ndarray]
) -> None:
optimizer._restored_weights = weights
optimizer._create_all_weights_orig = optimizer._create_all_weights
# MethodType is used to "bind" the _temp_create_all_weights method
# to the "live" optimizer object
optimizer._create_all_weights = MethodType(_temp_create_all_weights, optimizer)
temp_dir = f"ram://{uuid4().hex}"
try:
yield temp_dir
finally:
for root, _, filenames in tf_io.gfile.walk(temp_dir):
for filename in filenames:
dest = os.path.join(root, filename)
tf_io.gfile.remove(dest)


def unpack_keras_model(
packed_keras_model: np.ndarray, optimizer_weights: List[np.ndarray]
packed_keras_model: np.ndarray,
):
"""Reconstruct a model from the result of __reduce__"""
temp_dir = _get_temp_folder()
b = BytesIO(packed_keras_model)
with tarfile.open(fileobj=b, mode="r") as archive:
for fname in archive.getnames():
dest = os.path.join(temp_dir, fname)
tf_io.gfile.makedirs(os.path.dirname(dest))
with tf_io.gfile.GFile(dest, "wb") as f:
f.write(archive.extractfile(fname).read())
model: keras.Model = load_model(temp_dir)
for root, _, filenames in tf_io.gfile.walk(temp_dir):
for filename in filenames:
if filename.startswith("ram://"):
# Currently, tf.io.gfile.walk returns
# the entire path for the ram:// filesystem
dest = filename
else:
dest = os.path.join(root, filename)
tf_io.gfile.remove(dest)
if model.optimizer is not None:
_restore_optimizer_weights(model.optimizer, optimizer_weights)
return model
with _get_temp_folder() as temp_dir:
b = BytesIO(packed_keras_model)
with tarfile.open(fileobj=b, mode="r") as archive:
for fname in archive.getnames():
dest = os.path.join(temp_dir, fname)
tf_io.gfile.makedirs(os.path.dirname(dest))
with tf_io.gfile.GFile(dest, "wb") as f:
f.write(archive.extractfile(fname).read())
model: keras.Model = load_model(temp_dir)
model.load_weights(temp_dir)
model.optimizer.build(model.trainable_variables)
return model


def pack_keras_model(
Expand All @@ -85,47 +61,35 @@ def pack_keras_model(
Tuple[np.ndarray, List[np.ndarray]],
]:
"""Support for Pythons's Pickle protocol."""
temp_dir = _get_temp_folder()
model.save(temp_dir)
b = BytesIO()
with tarfile.open(fileobj=b, mode="w") as archive:
for root, _, filenames in tf_io.gfile.walk(temp_dir):
for filename in filenames:
if filename.startswith("ram://"):
# Currently, tf.io.gfile.walk returns
# the entire path for the ram:// filesystem
dest = filename
else:
with _get_temp_folder() as temp_dir:
model.save(temp_dir)
b = BytesIO()
with tarfile.open(fileobj=b, mode="w") as archive:
for root, _, filenames in tf_io.gfile.walk(temp_dir):
for filename in filenames:
dest = os.path.join(root, filename)
with tf_io.gfile.GFile(dest, "rb") as f:
info = tarfile.TarInfo(name=os.path.relpath(dest, temp_dir))
info.size = f.size()
archive.addfile(tarinfo=info, fileobj=f)
tf_io.gfile.remove(dest)
b.seek(0)
optimizer_weights = None
if model.optimizer is not None:
optimizer_weights = model.optimizer.get_weights()
model_bytes = np.asarray(memoryview(b.read()))
return (
unpack_keras_model,
(model_bytes, optimizer_weights),
)
with tf_io.gfile.GFile(dest, "rb") as f:
info = tarfile.TarInfo(name=os.path.relpath(dest, temp_dir))
info.size = f.size()
archive.addfile(tarinfo=info, fileobj=f)
tf_io.gfile.remove(dest)
b.seek(0)
model_bytes = np.asarray(memoryview(b.read()))
return (unpack_keras_model, (model_bytes,))


def deepcopy_model(model: keras.Model, memo: Dict[Hashable, Any]) -> keras.Model:
_, (model_bytes, optimizer_weights) = pack_keras_model(model)
new_model = unpack_keras_model(model_bytes, optimizer_weights)
_, (model_bytes,) = pack_keras_model(model)
new_model = unpack_keras_model(model_bytes)
memo[model] = new_model
return new_model


def unpack_keras_optimizer(
opt_serialized: Dict[str, Any], weights: List[np.ndarray]
opt_serialized: Dict[str, Any]
) -> keras.optimizers.Optimizer:
"""Reconstruct optimizer."""
optimizer: keras.optimizers.Optimizer = keras.optimizers.deserialize(opt_serialized)
_restore_optimizer_weights(optimizer, weights)
return optimizer


Expand All @@ -139,8 +103,7 @@ def pack_keras_optimizer(
]:
"""Support for Pythons's Pickle protocol in Keras Optimizers."""
opt_serialized = keras.optimizers.serialize(optimizer)
weights = optimizer.get_weights()
return unpack_keras_optimizer, (opt_serialized, weights)
return unpack_keras_optimizer, (opt_serialized,)


def unpack_keras_metric(metric_serialized: Dict[str, Any]) -> keras.metrics.Metric:
Expand Down
3 changes: 1 addition & 2 deletions scikeras/utils/transformers.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,8 +47,7 @@ def fit(self, y: np.ndarray) -> "TargetReshaper":
self.ndim_ = y.ndim
return self

@staticmethod
def transform(y: np.ndarray) -> np.ndarray:
def transform(self, y: np.ndarray) -> np.ndarray:
"""Makes 1D y 2D.
Parameters
Expand Down
Loading

0 comments on commit 32fc6af

Please sign in to comment.