Skip to content

gnark commitments to private witnesses in Groth16 as implemented break zero-knowledge property

High severity GitHub Reviewed Published Sep 6, 2024 in Consensys/gnark • Updated Nov 18, 2024

Package

gomod github.com/consensys/gnark (Go)

Affected versions

< 0.11.0

Patched versions

0.11.0

Description

This report concerns the Groth16 prover when used with commitments (as in frontend.Committer). To simplify exposition of the issue, I will focus on the case of a single commitment, to only private witnesses. But the issue should be present whenever commitments are used that include private witnesses.

The commitment to private witnesses w_i is computed as

c = sum_i w_i * b_i

where b_i would be ProvingKey.CommitmentKeys[0].Basis[i] in the code.

While this is a binding commitment, it is not hiding. In practice, an adversary will know the points b_i, as they are part of the proving key, and can verify correctness of a guess for the values of w_i by computing c' as the right hand side of the above formula, and checking whether c' is equal to c. I attach a proof of concept that demonstrates this.

This breaks the perfect zero-knowledge property of Groth16, so the Groth16 scheme using commitments to private witnesses as implemented by gnark fails to be a zk-SNARK.

The code indicates that the extension to Groth16 given by the commitments follows the paper "Recursion over Public-Coin Interactive Proof Systems; Faster Hash Verification" by Alexandre Belling, Azam Soleimanian, and Olivier Begassat. In that paper, it seems that commitments are applied to what were originally public inputs, which are moved to private witnesses for efficiency reasons. In any case, that paper does not discuss any hiding/privacy/zero-knowledge properties of their protocols.

So for the use-cases envisioned by that paper, having the commitment not be hiding and losing zero-knowledge of Groth16 might be adequate. However, the documentation by gnark does not make clear that committing to private witnesses loses the zero-knowledge property. The documentation for frontend.Committer does not mention this, and the following snippet from std/multicommit/doc_test.go, where private witness variables are named Secrets and are committed, seems to actively suggest that committed witnesses are still private.

// MultipleCommitmentCircuit is an example circuit showing usage of multiple
// independent commitments in-circuit.
type MultipleCommitmentsCircuit struct {
    Secrets [4]frontend.Variable
}

func (c *MultipleCommitmentsCircuit) Define(api frontend.API) error {
    // first callback receives first unique commitment derived from the root commitment
    multicommit.WithCommitment(api, func(api frontend.API, commitment frontend.Variable) error {
        // compute (X-s[0]) * (X-s[1]) for a random X
        res := api.Mul(api.Sub(commitment, c.Secrets[0]), api.Sub(commitment, c.Secrets[1]))
        api.AssertIsDifferent(res, 0)
        return nil
    }, c.Secrets[:2]...)
   // ...

Thus it seems to me that the intention likely was (and users will be expecting) that gnark's implementation of Groth16 with these commitments should still have zero-knowledge and that the commitments should be hiding.

The way to fix this is likely to adjust the commitment to be hiding the way that is done in the LegoSNARK paper (https://eprint.iacr.org/2019/142.pdf). To expand:

First, let me fix some notation.

Currently, the verifying key has two points on G2 used for checking the proof of knowledge for the commitment: g and g'=-1/σ * g (in the code: VerifyingKey.CommitmentKey.G and VerifyingKey.CommitmentKey.GRootSigmaNeg).
The commitment itself is then c = sum_i w_i * b_i, where b_i are on G1, and the proof of knowledge associated to c is calculated as pok = sum_i w_i * b'_i, where b'_i = σ*b_i (in the code b_i and b'_i are ProvingKey.CommitmentKeys.Basis[0][i] and ProvingKey.CommitmentKeys.BasisExpSigma[0][i]). The proof of knowledge is then verified by checking e(c, g) + e(pok, g') = 0 (I am using additive notation throughout here).

The Groth16 proof is verified by checking

e(Krs, -[δ]₂) + e(c, -[γ]₂) + e(term involving public inputs, -[γ]₂) + other terms = 0

The construction ccGro16 from the LegoSNARK paper (page 73 in https://eprint.iacr.org/2019/142.pdf) is a similar construction. They do not have a proof of knowledge accompanying the commitment because they are considering the case where there are no public inputs. However, they claim that their scheme is zero-knowledge, and the crucial difference for this is that their commitment has an extra blinding term as is usual for Pedersen commitments. Concretely, it is of the form:

c_new = sum_i w_i * b_i + v*[η/γ]₁

where [η/γ]₁ is a new element of G1 that is part of the proving key, with η a new toxic waste field element. The value of v is randomly chosen by the prover.

When adding this additional term to c, then to make the proof verification still succeeds, the proof point Krs is changed accordingly:

Krs_new = Krs_old -  v*[η/δ]₁

where [η/δ]₁ is another new element of G1 that is part of the proving key. As e([η/γ]₁, -[γ]₂) = e([η/δ]₁, -[δ]₂), the contributions from the new terms cancel each other in the proof verification pairing check.

This modification should ensure that the commitment is hiding.

The proof of knowledge would also need to be adapted accordingly, with

pok = sum_i w_i * b'_i + v*[σ*η/γ]₁

where [σ*η/γ]₁ is another point of G1 to add to the proving key.

Impact

The vulnerability affects only Groth16 proofs with commitments. Notably, PLONK proofs are not affected.

The vulnerability affects the zero-knowledge property of the proofs - in case the witness (secret or internal) values are small, then the attacker may be able to enumerate all possible choices to deduce the actual value. If the possible choices for the variables to be committed is large or there are many values committed, then it would be computationally infeasible to enumerate all valid choices.

It doesn't affect the completeness/soundness of the proofs.

Patches

The vulnerability has been fixed in Consensys/gnark#1245. Corresponding commit on the master branch Consensys/gnark@afda68a.

The patch to fix the issue is to add additional randomized value to the list of committed value at proving time to mask the rest of the values which were committed.

Workarounds

The user can manually commit to a randomized value.

References

@ivokub ivokub published to Consensys/gnark Sep 6, 2024
Published by the National Vulnerability Database Sep 6, 2024
Published to the GitHub Advisory Database Sep 6, 2024
Reviewed Sep 6, 2024
Last updated Nov 18, 2024

Severity

High

CVSS overall score

This score calculates overall vulnerability severity from 0 to 10 and is based on the Common Vulnerability Scoring System (CVSS).
/ 10

CVSS v4 base metrics

Exploitability Metrics
Attack Vector Network
Attack Complexity High
Attack Requirements None
Privileges Required None
User interaction None
Vulnerable System Impact Metrics
Confidentiality High
Integrity None
Availability None
Subsequent System Impact Metrics
Confidentiality None
Integrity None
Availability None

CVSS v4 base metrics

Exploitability Metrics
Attack Vector: This metric reflects the context by which vulnerability exploitation is possible. This metric value (and consequently the resulting severity) will be larger the more remote (logically, and physically) an attacker can be in order to exploit the vulnerable system. The assumption is that the number of potential attackers for a vulnerability that could be exploited from across a network is larger than the number of potential attackers that could exploit a vulnerability requiring physical access to a device, and therefore warrants a greater severity.
Attack Complexity: This metric captures measurable actions that must be taken by the attacker to actively evade or circumvent existing built-in security-enhancing conditions in order to obtain a working exploit. These are conditions whose primary purpose is to increase security and/or increase exploit engineering complexity. A vulnerability exploitable without a target-specific variable has a lower complexity than a vulnerability that would require non-trivial customization. This metric is meant to capture security mechanisms utilized by the vulnerable system.
Attack Requirements: This metric captures the prerequisite deployment and execution conditions or variables of the vulnerable system that enable the attack. These differ from security-enhancing techniques/technologies (ref Attack Complexity) as the primary purpose of these conditions is not to explicitly mitigate attacks, but rather, emerge naturally as a consequence of the deployment and execution of the vulnerable system.
Privileges Required: This metric describes the level of privileges an attacker must possess prior to successfully exploiting the vulnerability. The method by which the attacker obtains privileged credentials prior to the attack (e.g., free trial accounts), is outside the scope of this metric. Generally, self-service provisioned accounts do not constitute a privilege requirement if the attacker can grant themselves privileges as part of the attack.
User interaction: This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable system. This metric determines whether the vulnerability can be exploited solely at the will of the attacker, or whether a separate user (or user-initiated process) must participate in some manner.
Vulnerable System Impact Metrics
Confidentiality: This metric measures the impact to the confidentiality of the information managed by the VULNERABLE SYSTEM due to a successfully exploited vulnerability. Confidentiality refers to limiting information access and disclosure to only authorized users, as well as preventing access by, or disclosure to, unauthorized ones.
Integrity: This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. Integrity of the VULNERABLE SYSTEM is impacted when an attacker makes unauthorized modification of system data. Integrity is also impacted when a system user can repudiate critical actions taken in the context of the system (e.g. due to insufficient logging).
Availability: This metric measures the impact to the availability of the VULNERABLE SYSTEM resulting from a successfully exploited vulnerability. While the Confidentiality and Integrity impact metrics apply to the loss of confidentiality or integrity of data (e.g., information, files) used by the system, this metric refers to the loss of availability of the impacted system itself, such as a networked service (e.g., web, database, email). Since availability refers to the accessibility of information resources, attacks that consume network bandwidth, processor cycles, or disk space all impact the availability of a system.
Subsequent System Impact Metrics
Confidentiality: This metric measures the impact to the confidentiality of the information managed by the SUBSEQUENT SYSTEM due to a successfully exploited vulnerability. Confidentiality refers to limiting information access and disclosure to only authorized users, as well as preventing access by, or disclosure to, unauthorized ones.
Integrity: This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. Integrity of the SUBSEQUENT SYSTEM is impacted when an attacker makes unauthorized modification of system data. Integrity is also impacted when a system user can repudiate critical actions taken in the context of the system (e.g. due to insufficient logging).
Availability: This metric measures the impact to the availability of the SUBSEQUENT SYSTEM resulting from a successfully exploited vulnerability. While the Confidentiality and Integrity impact metrics apply to the loss of confidentiality or integrity of data (e.g., information, files) used by the system, this metric refers to the loss of availability of the impacted system itself, such as a networked service (e.g., web, database, email). Since availability refers to the accessibility of information resources, attacks that consume network bandwidth, processor cycles, or disk space all impact the availability of a system.
CVSS:4.0/AV:N/AC:H/AT:N/PR:N/UI:N/VC:H/VI:N/VA:N/SC:N/SI:N/SA:N

EPSS score

Exploit Prediction Scoring System (EPSS)

This score estimates the probability of this vulnerability being exploited within the next 30 days. Data provided by FIRST.
(31st percentile)

Weaknesses

CVE ID

CVE-2024-45040

GHSA ID

GHSA-9xcg-3q8v-7fq6

Source code

Credits

Loading Checking history
See something to contribute? Suggest improvements for this vulnerability.