Skip to content

Sharks has a Bias of Polynomial Coefficients in Secret Sharing

Moderate severity GitHub Reviewed Published Nov 18, 2024 to the GitHub Advisory Database • Updated Nov 18, 2024

Package

cargo sharks (Rust)

Affected versions

<= 0.5.0

Patched versions

None

Description

Affected versions of this crate allowed for a bias when generating random polynomials for Shamir Secret Sharing, where instead of being within the range [0, 255] they were instead in the range [1, 255]. A description from Cure53, who originally found the issue, is available:

The correct method to select a random polynomial would be to select all coefficients (including the most significant coefficient) uniformly in the range 0..255 (inclusive). Otherwise, knowledge that a coefficient in a polynomial cannot be 0 permits the exclusion of single byte values for the shared secret given one share less than required. [...] Exploiting this weakness necessitates sharing the same secret multiple times. In this scenario, an attacker could exclude an exponential number of values for each of the shared bytes until sufficiently few values remain for brute forcing. Cure53 estimates that under ideal circumstances (e.g., a 2-out-of-N scheme) a shared secret can be reconstructed if the same secret has been distributed 500-1500 times.

Secrets that have been shared a low amount of times (ideally, once) would not be impacted. However, secrets that are repeatedly shared may be vulnerable, especially if the shares are still available, and should be rotated.

The vulnerability does not impact reconstitution of secrets: secrets that have already been split can be recombined without issue.

The flaw can be corrected by changing the lower bound of the polynomial coefficient range in the sharks::math::random_polynomial function to 0. The blahaj crate has been made available with a fixed version of the code, after attempts to reach the maintainer of the sharks crate were unsuccessful.

References

Published to the GitHub Advisory Database Nov 18, 2024
Reviewed Nov 18, 2024
Last updated Nov 18, 2024

Severity

Moderate

CVSS overall score

This score calculates overall vulnerability severity from 0 to 10 and is based on the Common Vulnerability Scoring System (CVSS).
/ 10

CVSS v4 base metrics

Exploitability Metrics
Attack Vector Network
Attack Complexity High
Attack Requirements None
Privileges Required None
User interaction Passive
Vulnerable System Impact Metrics
Confidentiality High
Integrity None
Availability None
Subsequent System Impact Metrics
Confidentiality None
Integrity None
Availability None

CVSS v4 base metrics

Exploitability Metrics
Attack Vector: This metric reflects the context by which vulnerability exploitation is possible. This metric value (and consequently the resulting severity) will be larger the more remote (logically, and physically) an attacker can be in order to exploit the vulnerable system. The assumption is that the number of potential attackers for a vulnerability that could be exploited from across a network is larger than the number of potential attackers that could exploit a vulnerability requiring physical access to a device, and therefore warrants a greater severity.
Attack Complexity: This metric captures measurable actions that must be taken by the attacker to actively evade or circumvent existing built-in security-enhancing conditions in order to obtain a working exploit. These are conditions whose primary purpose is to increase security and/or increase exploit engineering complexity. A vulnerability exploitable without a target-specific variable has a lower complexity than a vulnerability that would require non-trivial customization. This metric is meant to capture security mechanisms utilized by the vulnerable system.
Attack Requirements: This metric captures the prerequisite deployment and execution conditions or variables of the vulnerable system that enable the attack. These differ from security-enhancing techniques/technologies (ref Attack Complexity) as the primary purpose of these conditions is not to explicitly mitigate attacks, but rather, emerge naturally as a consequence of the deployment and execution of the vulnerable system.
Privileges Required: This metric describes the level of privileges an attacker must possess prior to successfully exploiting the vulnerability. The method by which the attacker obtains privileged credentials prior to the attack (e.g., free trial accounts), is outside the scope of this metric. Generally, self-service provisioned accounts do not constitute a privilege requirement if the attacker can grant themselves privileges as part of the attack.
User interaction: This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable system. This metric determines whether the vulnerability can be exploited solely at the will of the attacker, or whether a separate user (or user-initiated process) must participate in some manner.
Vulnerable System Impact Metrics
Confidentiality: This metric measures the impact to the confidentiality of the information managed by the VULNERABLE SYSTEM due to a successfully exploited vulnerability. Confidentiality refers to limiting information access and disclosure to only authorized users, as well as preventing access by, or disclosure to, unauthorized ones.
Integrity: This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. Integrity of the VULNERABLE SYSTEM is impacted when an attacker makes unauthorized modification of system data. Integrity is also impacted when a system user can repudiate critical actions taken in the context of the system (e.g. due to insufficient logging).
Availability: This metric measures the impact to the availability of the VULNERABLE SYSTEM resulting from a successfully exploited vulnerability. While the Confidentiality and Integrity impact metrics apply to the loss of confidentiality or integrity of data (e.g., information, files) used by the system, this metric refers to the loss of availability of the impacted system itself, such as a networked service (e.g., web, database, email). Since availability refers to the accessibility of information resources, attacks that consume network bandwidth, processor cycles, or disk space all impact the availability of a system.
Subsequent System Impact Metrics
Confidentiality: This metric measures the impact to the confidentiality of the information managed by the SUBSEQUENT SYSTEM due to a successfully exploited vulnerability. Confidentiality refers to limiting information access and disclosure to only authorized users, as well as preventing access by, or disclosure to, unauthorized ones.
Integrity: This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. Integrity of the SUBSEQUENT SYSTEM is impacted when an attacker makes unauthorized modification of system data. Integrity is also impacted when a system user can repudiate critical actions taken in the context of the system (e.g. due to insufficient logging).
Availability: This metric measures the impact to the availability of the SUBSEQUENT SYSTEM resulting from a successfully exploited vulnerability. While the Confidentiality and Integrity impact metrics apply to the loss of confidentiality or integrity of data (e.g., information, files) used by the system, this metric refers to the loss of availability of the impacted system itself, such as a networked service (e.g., web, database, email). Since availability refers to the accessibility of information resources, attacks that consume network bandwidth, processor cycles, or disk space all impact the availability of a system.
CVSS:4.0/AV:N/AC:H/AT:N/PR:N/UI:P/VC:H/VI:N/VA:N/SC:N/SI:N/SA:N

EPSS score

Weaknesses

CVE ID

No known CVE

GHSA ID

GHSA-jp37-5qhw-mffw

Source code

Loading Checking history
See something to contribute? Suggest improvements for this vulnerability.