-
Notifications
You must be signed in to change notification settings - Fork 408
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add Matrix Inversion Example to Documentation
- Loading branch information
Showing
1 changed file
with
224 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,224 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "raw", | ||
"metadata": { | ||
"editable": true, | ||
"raw_mimetype": "text/restructuredtext", | ||
"slideshow": { | ||
"slide_type": "" | ||
}, | ||
"tags": [] | ||
}, | ||
"source": [ | ||
".. _nb_matrix_inversion:" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"editable": true, | ||
"slideshow": { | ||
"slide_type": "" | ||
}, | ||
"tags": [] | ||
}, | ||
"source": [ | ||
"## Matrix Inversion\n", | ||
"\n", | ||
"In this case study, the optimization of a matrix shall be illustrated. Of course, we all know that there are very efficient algorithms for calculating an inverse of a matrix. However, for the sake of illustration, a small example shall show that pymoo can also be used to optimize matrices or even tensors.\n", | ||
"\n", | ||
"Assuming matrix `A` has a size of `n x n`, the problem can be defined by optimizing a vector consisting of `n**2` variables. During evaluation the vector `x`, is reshaped to inversion of the matrix to be found (and also stored as the attribute `A_inv` to be retrieved later)." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": { | ||
"editable": true, | ||
"slideshow": { | ||
"slide_type": "" | ||
}, | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"from pymoo.core.problem import ElementwiseProblem\n", | ||
"\n", | ||
"\n", | ||
"class MatrixInversionProblem(ElementwiseProblem):\n", | ||
"\n", | ||
" def __init__(self, A, **kwargs):\n", | ||
" self.A = A\n", | ||
" self.n = len(A)\n", | ||
" super().__init__(n_var=self.n**2, n_obj=1, xl=-100.0, xu=+100.0, **kwargs)\n", | ||
"\n", | ||
"\n", | ||
" def _evaluate(self, x, out, *args, **kwargs):\n", | ||
" A_inv = x.reshape((self.n, self.n))\n", | ||
" out[\"A_inv\"] = A_inv\n", | ||
"\n", | ||
" I = np.eye(self.n)\n", | ||
" out[\"F\"] = ((I - (A @ A_inv)) ** 2).sum()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"editable": true, | ||
"slideshow": { | ||
"slide_type": "" | ||
}, | ||
"tags": [] | ||
}, | ||
"source": [ | ||
"Now let us see what solution is found to be optimal" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": { | ||
"editable": true, | ||
"slideshow": { | ||
"slide_type": "" | ||
}, | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"from pymoo.algorithms.soo.nonconvex.de import DE\n", | ||
"from pymoo.optimize import minimize\n", | ||
"\n", | ||
"np.random.seed(1)\n", | ||
"A = np.random.random((2, 2))\n", | ||
"\n", | ||
"problem = MatrixInversionProblem(A)\n", | ||
"\n", | ||
"algorithm = DE()\n", | ||
"\n", | ||
"res = minimize(problem,\n", | ||
" algorithm,\n", | ||
" seed=1,\n", | ||
" verbose=False)\n", | ||
"\n", | ||
"opt = res.opt[0]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"editable": true, | ||
"slideshow": { | ||
"slide_type": "" | ||
}, | ||
"tags": [] | ||
}, | ||
"source": [ | ||
"In this case the true optimum is actually known. It is" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": { | ||
"editable": true, | ||
"slideshow": { | ||
"slide_type": "" | ||
}, | ||
"tags": [] | ||
}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"array([[ 2.39952297e+00, -5.71699951e+00],\n", | ||
" [-9.07758630e-04, 3.30977861e+00]])" | ||
] | ||
}, | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"np.linalg.inv(A)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"editable": true, | ||
"slideshow": { | ||
"slide_type": "" | ||
}, | ||
"tags": [] | ||
}, | ||
"source": [ | ||
"Let us see if the black-box optimization algorithm has found something similar" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": { | ||
"editable": true, | ||
"slideshow": { | ||
"slide_type": "" | ||
}, | ||
"tags": [] | ||
}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"array([[ 2.39916052e+00, -5.71656622e+00],\n", | ||
" [-8.41267527e-04, 3.30978797e+00]])" | ||
] | ||
}, | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"opt.get(\"A_inv\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"editable": true, | ||
"slideshow": { | ||
"slide_type": "" | ||
}, | ||
"tags": [] | ||
}, | ||
"source": [ | ||
"This small example shall have illustrated how a matrix can be optimized. In fact, this is implemented by optimizing a vector of variables that are reshaped during evaluation." | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.12.1" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} |