Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added derivative and Hessian for eggholder test function #435

Merged
merged 1 commit into from
Feb 7, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
191 changes: 191 additions & 0 deletions crates/argmin-testfunctions/src/eggholder.rs
Original file line number Diff line number Diff line change
Expand Up @@ -42,10 +42,168 @@ where
- x1 * (x1 - (x2 + n47)).abs().sqrt().sin()
}

/// Derivative of Eggholder test function
pub fn eggholder_derivative<T>(param: &[T; 2]) -> [T; 2]
where
T: Float + FromPrimitive,
{
let [x1, x2] = *param;

let eps = T::epsilon();
let n0 = T::from_f64(0.0).unwrap();
let n2 = T::from_f64(2.0).unwrap();
let n4 = T::from_f64(4.0).unwrap();
let n47 = T::from_f64(47.0).unwrap();

let x1mx2m47 = x1 - x2 - n47;
let x1mx2m47abs = x1mx2m47.abs();
let x1mx2m47abssqrt = x1mx2m47abs.sqrt();
let x1mx2m47abssqrtsin = x1mx2m47abssqrt.sin();
let x1mx2m47abssqrtcos = x1mx2m47abssqrt.cos();
let x1hpx2p47 = x1 / n2 + x2 + n47;
let x1hpx2p47abs = x1hpx2p47.abs();
let x1hpx2p47abssqrt = x1hpx2p47abs.sqrt();
let x1hpx2p47abssqrtsin = x1hpx2p47abssqrt.sin();
let x1hpx2p47abssqrtcos = x1hpx2p47abssqrt.cos();
let x2mx1p47 = x2 - x1 + n47;
let x2mx1p47abs = x2mx1p47.abs();
let x2mx1p47abssqrt = x2mx1p47abs.sqrt();
let x2mx1p47abssqrtcos = x2mx1p47abssqrt.cos();

[
-x1mx2m47abssqrtsin
- if x1mx2m47abs <= eps {
n0
} else {
(x1 * x1mx2m47 * x1mx2m47abssqrtcos) / (n2 * x1mx2m47abssqrt.powi(3))
}
- if x1hpx2p47abs <= eps {
n0
} else {
((x2 + n47) * x1hpx2p47abssqrtcos * x1hpx2p47) / (n4 * x1hpx2p47abssqrt.powi(3))
},
-x1hpx2p47abssqrtsin
- if x1hpx2p47abs <= eps {
n0
} else {
((x2 + n47) * x1hpx2p47 * x1hpx2p47abssqrtcos) / (n2 * x1hpx2p47abssqrt.powi(3))
}
- if x2mx1p47abs <= eps {
n0
} else {
(x1 * x2mx1p47 * x2mx1p47abssqrtcos) / (n2 * x2mx1p47abssqrt.powi(3))
},
]
}

/// Hessian of Eggholder test function
pub fn eggholder_hessian<T>(param: &[T; 2]) -> [[T; 2]; 2]
where
T: Float + FromPrimitive,
{
let [x1, x2] = *param;

let eps = T::epsilon();
let n0 = T::from_f64(0.0).unwrap();
let n2 = T::from_f64(2.0).unwrap();
let n3 = T::from_f64(3.0).unwrap();
let n4 = T::from_f64(4.0).unwrap();
let n8 = T::from_f64(8.0).unwrap();
let n16 = T::from_f64(16.0).unwrap();
let n47 = T::from_f64(47.0).unwrap();

let x1mx2m47 = x1 - x2 - n47;
let x1mx2m47abs = x1mx2m47.abs();
let x1mx2m47abssqrt = x1mx2m47abs.sqrt();
let x1mx2m47abssqrtsin = x1mx2m47abssqrt.sin();
let x1mx2m47abssqrtcos = x1mx2m47abssqrt.cos();
let x1hpx2p47 = x1 / n2 + x2 + n47;
let x1hpx2p47abs = x1hpx2p47.abs();
let x1hpx2p47abssqrt = x1hpx2p47abs.sqrt();
let x1hpx2p47abssqrtsin = x1hpx2p47abssqrt.sin();
let x1hpx2p47abssqrtcos = x1hpx2p47abssqrt.cos();
let x2mx1p47 = x2 - x1 + n47;
let x2mx1p47abs = x2mx1p47.abs();
let x2mx1p47abssqrt = x2mx1p47abs.sqrt();
let x2mx1p47abssqrtcos = x2mx1p47abssqrt.cos();
let x2mx1p47abssqrtsin = x2mx1p47abssqrt.sin();

let a = if x1mx2m47abs <= eps {
n0
} else {
(x1 * x1mx2m47abssqrtsin) / (n4 * x1mx2m47abs)
- (x1mx2m47 * x1mx2m47abssqrtcos) / (x1mx2m47abssqrt.powi(3))
+ (n3 * x1 * x1mx2m47.powi(2) * x1mx2m47abssqrtcos) / (n4 * x1mx2m47abssqrt.powi(7))
} + if x1mx2m47abs <= eps && x1.abs() <= eps {
n0
} else {
-(x1 * x1mx2m47abssqrtcos) / (n2 * x1mx2m47abssqrt.powi(3))
} + if x1hpx2p47abs <= eps {
n0
} else {
(n3 * (x2 + n47) * x1hpx2p47abssqrtcos * x1hpx2p47.powi(2))
/ (n16 * x1hpx2p47abssqrt.powi(7))
+ ((x2 + n47) * x1hpx2p47abssqrtsin) / (n16 * x1hpx2p47abs)
} - if x1hpx2p47abs <= eps && (x1 + n47).abs() <= eps {
n0
} else {
((x2 + n47) * x1hpx2p47abssqrtcos) / (n8 * x1hpx2p47abssqrt.powi(3))
};

let b = if x1hpx2p47abs <= eps {
n0
} else {
((x2 + n47) * x1hpx2p47abssqrtsin) / (n4 * x1hpx2p47abs)
- (x1hpx2p47 * x1hpx2p47abssqrtcos) / (x1hpx2p47abssqrt.powi(3))
+ (n3 * (x2 + n47) * x1hpx2p47.powi(2) * x1hpx2p47abssqrtcos)
/ (n4 * x1hpx2p47abssqrt.powi(7))
} - if x1hpx2p47abs <= eps && (x2 + n47).abs() <= eps {
n0
} else {
((x2 + n47) * x1hpx2p47abssqrtcos) / (n2 * x1hpx2p47abssqrt.powi(3))
} + if x2mx1p47abs <= eps {
n0
} else {
(x1 * x2mx1p47abssqrtsin) / (n4 * x2mx1p47abs)
+ (n3 * x1 * x2mx1p47.powi(2) * x2mx1p47abssqrtcos) / (n4 * x2mx1p47abssqrt.powi(7))
} - if x2mx1p47abs <= eps && x1.abs() <= eps {
n0
} else {
(x1 * x2mx1p47abssqrtcos) / (n2 * x2mx1p47abssqrt.powi(3))
};

let offdiag = if x1hpx2p47abs <= eps {
n0
} else {
((x2 + n47) * x1hpx2p47abssqrtsin) / (n8 * x1hpx2p47abs)
- (x1hpx2p47 * x1hpx2p47abssqrtcos) / (n4 * x1hpx2p47abssqrt.powi(3))
+ (n3 * (x2 + n47) * x1hpx2p47.powi(2) * x1hpx2p47abssqrtcos)
/ (n8 * x1hpx2p47abssqrt.powi(7))
} - if x1hpx2p47abs <= eps && (x2 + n47).abs() <= eps {
n0
} else {
((x2 + n47) * x1hpx2p47abssqrtcos) / (n4 * x1hpx2p47abssqrt.powi(3))
} + if x2mx1p47abs <= eps {
n0
} else {
-(x1 * x2mx1p47 * x2mx1p47abssqrtsin) / (n4 * x2mx1p47 * x2mx1p47abs)
- (x2mx1p47 * x2mx1p47abssqrtcos) / (n2 * x2mx1p47abssqrt.powi(3))
- (n3 * x1 * x2mx1p47.powi(2) * x2mx1p47abssqrtcos) / (n4 * x2mx1p47abssqrt.powi(7))
} + if x2mx1p47abs <= eps && x1.abs() <= eps {
n0
} else {
(x1 * x2mx1p47abssqrtcos) / (n2 * x2mx1p47abssqrt.powi(3))
};

[[a, offdiag], [offdiag, b]]
}

#[cfg(test)]
mod tests {
use super::*;
use approx::assert_relative_eq;
use finitediff::FiniteDiff;
use proptest::prelude::*;
use std::{f32, f64};

#[test]
Expand All @@ -61,4 +219,37 @@ mod tests {
epsilon = f64::EPSILON
);
}

proptest! {
#[test]
fn test_eggholder_derivative_finitediff(a in -512.0..512.0, b in -512.0..512.0) {
let param = [a, b];
let derivative = eggholder_derivative(&param);
let derivative_fd = Vec::from(param).central_diff(&|x| eggholder(&[x[0], x[1]]));
for i in 0..derivative.len() {
assert_relative_eq!(derivative[i], derivative_fd[i], epsilon = 1e-4);
}
}
}

proptest! {
#[test]
fn test_eggholder_hessian_finitediff(a in -512.0..512.0, b in -512.0..512.0) {
let param = [a, b];
let hessian = eggholder_hessian(&param);
let hessian_fd =
Vec::from(param).central_hessian(&|x| eggholder_derivative(&[x[0], x[1]]).to_vec());
let n = hessian.len();
println!("1: {hessian:?} at {a}/{b}");
println!("2: {hessian_fd:?} at {a}/{b}");
for i in 0..n {
assert_eq!(hessian[i].len(), n);
for j in 0..n {
if hessian_fd[i][j].is_finite() {
assert_relative_eq!(hessian[i][j], hessian_fd[i][j], epsilon = 1e-5);
}
}
}
}
}
}
Loading