Skip to content

aws-samples/amazon-sagemaker-llm-fine-tuning-remote-decorator

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Interactive fine-tuning of Foundation Models with Amazon SageMaker AI Training using @remote decorator

In this example we will go through the steps required for interactively fine-tuning foundation models on Amazon SageMaker AI by using @remote decorator for executing Training jobs.

You can run this repository from Amazon SageMaker Studio or from your local IDE.

For additional information, take a look at the AWS Blog Fine-tune Falcon 7B and other LLMs on Amazon SageMaker with @remote decorator

This notebook is inspired by Philipp Schmid Blogs

Prerequistes

The notebooks are currently using the latest PyTorch Training Container available for the region us-east-1. If you are running the notebooks in a different region, make sure to update the ImageUri in the file config.yaml.

If you want to operate in a different AWS region

  1. Navigate [Available Deep Learning Containers Images](Available Deep Learning Containers Images)
  2. Select the right Hugging Face TGI container for model training based on your selected region
  3. Update ImageUri in the file config.yaml

Notebooks

  1. [Supervised - QLoRA] Falcon-7B
  2. [Supervised - QLoRA, FSDP] Llama-13B
  3. [Self-supervised - QLoRA, FSDP] Llama-13B
  4. [Self-supervised - QLoRA] Mistral-7B
  5. [Supervised - QLoRA, FSDP] Mixtral-8x7B
  6. [Supervised - QLoRA, DDP] Code-Llama 13B
  7. [Supervised - QLORA, DDP] Llama-3 8B
  8. [Supervised - QLoRA, DDP] Llama-3.1 8B
  9. [Supervised - QLoRA, DDP] Arcee AI Llama-3.1 Supernova Lite
  10. [Supervised - QLoRA] Llama-3.2 1B
  11. [Supervised - QLoRA] Llama-3.2 3B
  12. [Supervised - QLoRA, FSDP] Codestral-22B
  13. [Supervised - LoRA] TinyLlama 1.1B
  14. [Supervised - LoRA] Arcee Lite 1.5B
  15. [Supervised - LoRA] SmolLM2-1.7B-Instruct
  16. [Supervised - QLORA, FSDP] Qwen 2.5 7B
  17. [Supervised - QLORA] Falcon3 3B
  18. [Supervised - QLORA, FSDP] Falcon3 7B
  19. [Supervised - QLORA, FSDP] Llama-3.1 70B
  20. [Self-supervised - DoRA, FSDP] Mistral-7B v0.3
  21. [Supervised - QLORA, FSDP] Llama-3.3 70B
  22. [Supervised - QLORA, FSDP] OpenCoder-8B-Instruct

About

No description, website, or topics provided.

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •