Skip to content

Commit

Permalink
Algorithm jSO
Browse files Browse the repository at this point in the history
Follows: Brest, Janez, Mirjam Sepesy Maucec, and Borko Boskovic. "Single objective real-parameter optimization: Algorithm jSO." 2017 IEEE congress on evolutionary computation (CEC). IEEE, 2017.
  • Loading branch information
NAThompson committed Jan 22, 2024
1 parent e06b1b7 commit cef2e8d
Show file tree
Hide file tree
Showing 5 changed files with 836 additions and 0 deletions.
97 changes: 97 additions & 0 deletions doc/optimization/jso.qbk
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
[/
Copyright (c) 2024 Nick Thompson
Use, modification and distribution are subject to the
Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
]

[section:jso Algorithm jSO]

[heading Synopsis]

``
#include <boost/math/optimization/jso.hpp>

namespace boost::math::optimization {

template <typename ArgumentContainer> struct jso_parameters {
using Real = typename ArgumentContainer::value_type;
ArgumentContainer lower_bounds;
ArgumentContainer upper_bounds;
size_t initial_population_size = 0;
size_t max_function_evaluations = 0;
ArgumentContainer const * initial_guess = nullptr;
};

template <typename ArgumentContainer, class Func, class URBG>
ArgumentContainer jso(
const Func cost_function, jso_parameters<ArgumentContainer> const &jso_params, URBG &gen,
std::invoke_result_t<Func, ArgumentContainer> target_value = std::numeric_limits<std::invoke_result_t<Func, ArgumentContainer>>::quiet_NaN(),
std::atomic<bool> *cancellation = nullptr,
std::atomic<std::invoke_result_t<Func, ArgumentContainer>> *current_minimum_cost = nullptr
std::vector<std::pair<ArgumentContainer, std::invoke_result_t<Func, ArgumentContainer>>> *queries = nullptr);

} // namespaces
``

The `jso` function provides a (hopefully) faithful implementation of Algorithm jSO, described in Brest et al 2017.
This algorithm came in second place in the 2017 conference on evolutionary computing competition.
It is an improvement on the classical differential evolution algorithm, which adapts the parameters in such as way that exploration is favored during early stages of the algorithm, and exploitation is favored during the later stages.
In particular, it incorporates numerous ideas in the literature (in particular SHADE and L-SHADE) which aid in fast convergence.
There are: Use of a historical archive of rejected vectors to provide information about convergence direction,
adapting crossover and mutation parameters based on whether they were associated with successful updates, linear population size reduction, and use of "current-to-p-best" mutation.

Like our implementation of differential evolution, it minimizes a cost function defined on a continuous space represented by a set of bounds.
Again this function has been designed more for progress observability, graceful cancellation, and post-hoc data analysis than for speed of convergence.

[heading Parameters]

`lower_bounds`: A container representing the lower bounds of the optimization space along each dimension. The `.size()` of the bounds should return the dimension of the problem.
`upper_bounds`: A container representing the upper bounds of the optimization space along each dimension. It should have the same size of `lower_bounds`, and each element should be >= the corresponding element of `lower_bounds`.
`initial_population_size`: How big the first generation should be. Defaults to ceil(25log(D+1)sqrt(D)).
`max_function_evaluations`: Defaults to 10000D, where D is the dimension of the space.
`initial_guess`: An optional guess for where we should start looking for solutions.

The defaults were chosen from a reading of Brest 2017.

[heading The function]

``
template <typename ArgumentContainer, class Func, class URBG>
ArgumentContainer jso(const Func cost_function,
jso_parameters<ArgumentContainer> const &jso_params,
URBG &gen,
std::invoke_result_t<Func, ArgumentContainer> value_to_reach = std::numeric_limits<std::invoke_result_t<Func, ArgumentContainer>>::quiet_NaN(),
std::atomic<bool> *cancellation = nullptr,
std::atomic<std::invoke_result_t<Func, ArgumentContainer>> *current_minimum_cost = nullptr,
std::vector<std::pair<ArgumentContainer, std::invoke_result_t<Func, ArgumentContainer>>> *queries = nullptr)
``

Parameters:

`cost_function`: The cost function to be minimized.
`jso_params`: The parameters to the algorithm as described above.
`gen`: A uniform random bit generator, like `std::mt19937_64`.
`value_to_reach`: An optional value that, if reached, stops the optimization. This is the most robust way to terminate the calculation, but in most cases the optimal value of the cost function is unknown. If it is, use it! Physical considerations can often be used to find optimal values for cost functions.
`cancellation`: An optional atomic boolean to allow the user to stop the computation and gracefully return the best result found up to that point. N.B.: Cancellation is not immediate; the in-progress generation finishes.
`current_minimum_cost`: An optional atomic variable to store the current minimum cost during optimization. This allows developers to (e.g.) plot the progress of the minimization over time and in conjunction with the `cancellation` argument allow halting the computation when the progress stagnates.
`queries`: An optional vector to store intermediate results during optimization. This is useful for debugging and perhaps volume rendering of the objective function after the calculation is complete.

Returns:

The argument vector corresponding to the minimum cost found by the optimization.

N.B.: The termination criteria is an "OR", not an "AND".
So if the maximum generations is hit, the iteration stops, even if (say) a `value_to_reach` has not been attained.

If you want more observability into what the optimization is doing, compile with `-DBOOST_MATH_DEBUG_JSO=1`

[h4:examples Examples]

An example exhibiting graceful cancellation and progress observability can be studied in [@../../example/jso_example.cpp jso_example.cpp].

[h4:references References]

* Brest, Janez, Mirjam Sepesy Maučec, and Borko Bošković. ['Single objective real-parameter optimization: Algorithm jSO.] 2017 IEEE congress on evolutionary computation (CEC). IEEE, 2017.

[endsect] [/section:jso jSO]
76 changes: 76 additions & 0 deletions example/jso_example.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
/*
* Copyright Nick Thompson, 2024
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#if __APPLE__ || __linux__
#include <signal.h>
#include <stdlib.h>
#include <stdio.h>
#include <future>
#include <chrono>
#include <boost/math/constants/constants.hpp>
#include <boost/math/optimization/jso.hpp>

using boost::math::optimization::jso_parameters;
using boost::math::optimization::jso;
using namespace std::chrono_literals;

template <class Real> Real rastrigin(std::vector<Real> const &v) {
using std::cos;
using boost::math::constants::two_pi;
Real A = 10;
Real y = 10 * v.size();
for (auto x : v) {
y += x * x - A * cos(two_pi<Real>() * x);
}
return y;
}

std::atomic<bool> cancel = false;

void ctrl_c_handler(int){
cancel = true;
std::cout << "Cancellation requested-this could take a second . . ." << std::endl;
}

int main() {
std::cout << "Running jSO on Rastrigin function (global minimum = (0,0,...,0))\n";
signal(SIGINT, ctrl_c_handler);
using ArgType = std::vector<double>;
auto jso_params = jso_parameters<ArgType>();
jso_params.lower_bounds.resize(500, -5.12);
jso_params.upper_bounds.resize(500, 5.12);
jso_params.initial_population_size = 5000;
jso_params.max_function_evaluations = 10000000;
std::mt19937_64 gen(34567);

// By definition, the value of the function which a target value is provided must be <= target_value.
double target_value = 1e-3;
std::atomic<double> current_minimum_cost;
std::cout << "Hit ctrl-C to gracefully terminate the optimization." << std::endl;
auto f = [&]() {
return jso(rastrigin<double>, jso_params, gen, target_value, &cancel, &current_minimum_cost);
};
auto future = std::async(std::launch::async, f);
std::future_status status = future.wait_for(3ms);
while (!cancel && (status != std::future_status::ready)) {
status = future.wait_for(3ms);
std::cout << "Current cost is " << current_minimum_cost << "\r";
}

auto local_minima = future.get();
std::cout << "Local minimum is {";
for (size_t i = 0; i < local_minima.size() - 1; ++i) {
std::cout << local_minima[i] << ", ";
}
std::cout << local_minima.back() << "}.\n";
std::cout << "Final cost: " << current_minimum_cost << "\n";
}
#else
#warning "Signal handling for the jSO example only works on Linux and Mac."
int main() {
return 0;
}
#endif
31 changes: 31 additions & 0 deletions include/boost/math/optimization/detail/common.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -161,5 +161,36 @@ template <typename Real> std::vector<size_t> best_indices(std::vector<Real> cons
return indices;
}

template<typename RandomAccessContainer>
auto weighted_lehmer_mean(RandomAccessContainer const & values, RandomAccessContainer const & weights) {
if (values.size() != weights.size()) {
std::ostringstream oss;
oss << __FILE__ << ":" << __LINE__ << ":" << __func__;
oss << ": There must be the same number of weights as values, but got " << values.size() << " values and " << weights.size() << " weights.";
throw std::logic_error(oss.str());
}
if (values.size() == 0) {
std::ostringstream oss;
oss << __FILE__ << ":" << __LINE__ << ":" << __func__;
oss << ": There must at least one value provided.";
throw std::logic_error(oss.str());
}
using Real = typename RandomAccessContainer::value_type;
Real numerator = 0;
Real denominator = 0;
for (size_t i = 0; i < values.size(); ++i) {
if (weights[i] < 0 || !std::isfinite(weights[i])) {
std::ostringstream oss;
oss << __FILE__ << ":" << __LINE__ << ":" << __func__;
oss << ": All weights must be positive and finite, but got received weight " << weights[i] << " at index " << i << " of " << weights.size() << ".";
throw std::domain_error(oss.str());
}
Real tmp = weights[i]*values[i];
numerator += tmp*values[i];
denominator += tmp;
}
return numerator/denominator;
}

} // namespace boost::math::optimization::detail
#endif
Loading

0 comments on commit cef2e8d

Please sign in to comment.