forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 8
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Regular for-next build test #1157
Open
kdave
wants to merge
10,000
commits into
build
Choose a base branch
from
for-next
base: build
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
kdave
force-pushed
the
for-next
branch
6 times, most recently
from
February 28, 2024 14:37
2d4aefb
to
c9e380a
Compare
kdave
force-pushed
the
for-next
branch
6 times, most recently
from
March 5, 2024 17:23
c56343b
to
1cab137
Compare
kdave
force-pushed
the
for-next
branch
2 times, most recently
from
March 15, 2024 01:05
6613f3c
to
b30a0ce
Compare
kdave
force-pushed
the
for-next
branch
6 times, most recently
from
March 25, 2024 17:48
d205ebd
to
c0bd9d9
Compare
kdave
force-pushed
the
for-next
branch
4 times, most recently
from
March 28, 2024 02:04
15022b1
to
c22750c
Compare
kdave
force-pushed
the
for-next
branch
3 times, most recently
from
April 4, 2024 19:30
28d9855
to
e18d8ce
Compare
…lock_delalloc_folios() Same pattern in both functions, we really only use index, start_index is redundant. Reviewed-by: Johannes Thumshirn <[email protected]> Reviewed-by: Anand Jain <[email protected]> Signed-off-by: David Sterba <[email protected]>
Rename the macro so it's obvious what it means. Reviewed-by: Johannes Thumshirn <[email protected]> Reviewed-by: Anand Jain <[email protected]> Signed-off-by: David Sterba <[email protected]>
[BUG] When running btrfs with block size (4K) smaller than page size (64K, aarch64), there is a very high chance to crash the kernel at generic/750, with the following messages: (before the call traces, there are 3 extra debug messages added) BTRFS warning (device dm-3): read-write for sector size 4096 with page size 65536 is experimental BTRFS info (device dm-3): checking UUID tree hrtimer: interrupt took 5451385 ns BTRFS error (device dm-3): cow_file_range failed, root=4957 inode=257 start=1605632 len=69632: -28 BTRFS error (device dm-3): run_delalloc_nocow failed, root=4957 inode=257 start=1605632 len=69632: -28 BTRFS error (device dm-3): failed to run delalloc range, root=4957 ino=257 folio=1572864 submit_bitmap=8-15 start=1605632 len=69632: -28 ------------[ cut here ]------------ WARNING: CPU: 2 PID: 3020984 at ordered-data.c:360 can_finish_ordered_extent+0x370/0x3b8 [btrfs] CPU: 2 UID: 0 PID: 3020984 Comm: kworker/u24:1 Tainted: G OE 6.13.0-rc1-custom+ torvalds#89 Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022 Workqueue: events_unbound btrfs_async_reclaim_data_space [btrfs] pc : can_finish_ordered_extent+0x370/0x3b8 [btrfs] lr : can_finish_ordered_extent+0x1ec/0x3b8 [btrfs] Call trace: can_finish_ordered_extent+0x370/0x3b8 [btrfs] (P) can_finish_ordered_extent+0x1ec/0x3b8 [btrfs] (L) btrfs_mark_ordered_io_finished+0x130/0x2b8 [btrfs] extent_writepage+0x10c/0x3b8 [btrfs] extent_write_cache_pages+0x21c/0x4e8 [btrfs] btrfs_writepages+0x94/0x160 [btrfs] do_writepages+0x74/0x190 filemap_fdatawrite_wbc+0x74/0xa0 start_delalloc_inodes+0x17c/0x3b0 [btrfs] btrfs_start_delalloc_roots+0x17c/0x288 [btrfs] shrink_delalloc+0x11c/0x280 [btrfs] flush_space+0x288/0x328 [btrfs] btrfs_async_reclaim_data_space+0x180/0x228 [btrfs] process_one_work+0x228/0x680 worker_thread+0x1bc/0x360 kthread+0x100/0x118 ret_from_fork+0x10/0x20 ---[ end trace 0000000000000000 ]--- BTRFS critical (device dm-3): bad ordered extent accounting, root=4957 ino=257 OE offset=1605632 OE len=16384 to_dec=16384 left=0 BTRFS critical (device dm-3): bad ordered extent accounting, root=4957 ino=257 OE offset=1622016 OE len=12288 to_dec=12288 left=0 Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008 BTRFS critical (device dm-3): bad ordered extent accounting, root=4957 ino=257 OE offset=1634304 OE len=8192 to_dec=4096 left=0 CPU: 1 UID: 0 PID: 3286940 Comm: kworker/u24:3 Tainted: G W OE 6.13.0-rc1-custom+ torvalds#89 Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022 Workqueue: btrfs_work_helper [btrfs] (btrfs-endio-write) pstate: 404000c5 (nZcv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : process_one_work+0x110/0x680 lr : worker_thread+0x1bc/0x360 Call trace: process_one_work+0x110/0x680 (P) worker_thread+0x1bc/0x360 (L) worker_thread+0x1bc/0x360 kthread+0x100/0x118 ret_from_fork+0x10/0x20 Code: f84086a1 f9000fe1 53041c21 b9003361 (f9400661) ---[ end trace 0000000000000000 ]--- Kernel panic - not syncing: Oops: Fatal exception SMP: stopping secondary CPUs SMP: failed to stop secondary CPUs 2-3 Dumping ftrace buffer: (ftrace buffer empty) Kernel Offset: 0x275bb9540000 from 0xffff800080000000 PHYS_OFFSET: 0xffff8fbba0000000 CPU features: 0x100,00000070,00801250,8201720b [CAUSE] The above warning is triggered immediately after the delalloc range failure, this happens in the following sequence: - Range [1568K, 1636K) is dirty 1536K 1568K 1600K 1636K 1664K | |/////////|////////| | Where 1536K, 1600K and 1664K are page boundaries (64K page size) - Enter extent_writepage() for page 1536K - Enter run_delalloc_nocow() with locked page 1536K and range [1568K, 1636K) This is due to the inode having preallocated extents. - Enter cow_file_range() with locked page 1536K and range [1568K, 1636K) - btrfs_reserve_extent() only reserved two extents The main loop of cow_file_range() only reserved two data extents, Now we have: 1536K 1568K 1600K 1636K 1664K | |<-->|<--->|/|///////| | 1584K 1596K Range [1568K, 1596K) has an ordered extent reserved. - btrfs_reserve_extent() failed inside cow_file_range() for file offset 1596K This is already a bug in our space reservation code, but for now let's focus on the error handling path. Now cow_file_range() returned -ENOSPC. - btrfs_run_delalloc_range() do error cleanup <<< ROOT CAUSE Call btrfs_cleanup_ordered_extents() with locked folio 1536K and range [1568K, 1636K) Function btrfs_cleanup_ordered_extents() normally needs to skip the ranges inside the folio, as it will normally be cleaned up by extent_writepage(). Such split error handling is already problematic in the first place. What's worse is the folio range skipping itself, which is not taking subpage cases into consideration at all, it will only skip the range if the page start >= the range start. In our case, the page start < the range start, since for subpage cases we can have delalloc ranges inside the folio but not covering the folio. So it doesn't skip the page range at all. This means all the ordered extents, both [1568K, 1584K) and [1584K, 1596K) will be marked as IOERR. And these two ordered extents have no more pending ios, they are marked finished, and *QUEUED* to be deleted from the io tree. - extent_writepage() do error cleanup Call btrfs_mark_ordered_io_finished() for the range [1536K, 1600K). Although ranges [1568K, 1584K) and [1584K, 1596K) are finished, the deletion from io tree is async, it may or may not happen at this time. If the ranges have not yet been removed, we will do double cleaning on those ranges, triggering the above ordered extent warnings. In theory there are other bugs, like the cleanup in extent_writepage() can cause double accounting on ranges that are submitted asynchronously (compression for example). But that's much harder to trigger because normally we do not mix regular and compression delalloc ranges. [FIX] The folio range split is already buggy and not subpage compatible, it was introduced a long time ago where subpage support was not even considered. So instead of splitting the ordered extents cleanup into the folio range and out of folio range, do all the cleanup inside writepage_delalloc(). - Pass @null as locked_folio for btrfs_cleanup_ordered_extents() in btrfs_run_delalloc_range() - Skip the btrfs_cleanup_ordered_extents() if writepage_delalloc() failed So all ordered extents are only cleaned up by btrfs_run_delalloc_range(). - Handle the ranges that already have ordered extents allocated If part of the folio already has ordered extent allocated, and btrfs_run_delalloc_range() failed, we also need to cleanup that range. Now we have a concentrated error handling for ordered extents during btrfs_run_delalloc_range(). Fixes: d1051d6 ("btrfs: Fix error handling in btrfs_cleanup_ordered_extents") CC: [email protected] # 5.15+ Reviewed-by: Boris Burkov <[email protected]> Signed-off-by: Qu Wenruo <[email protected]> Signed-off-by: David Sterba <[email protected]>
[BUG] If submit_one_sector() failed inside extent_writepage_io() for sector size < page size cases (e.g. 4K sector size and 64K page size), then we can hit double ordered extent accounting error. This should be very rare, as submit_one_sector() only fails when we failed to grab the extent map, and such extent map should exist inside the memory and has been pinned. [CAUSE] For example we have the following folio layout: 0 4K 32K 48K 60K 64K |//| |//////| |///| Where |///| is the dirty range we need to writeback. The 3 different dirty ranges are submitted for regular COW. Now we hit the following sequence: - submit_one_sector() returned 0 for [0, 4K) - submit_one_sector() returned 0 for [32K, 48K) - submit_one_sector() returned error for [60K, 64K) - btrfs_mark_ordered_io_finished() called for the whole folio This will mark the following ranges as finished: * [0, 4K) * [32K, 48K) Both ranges have their IO already submitted, this cleanup will lead to double accounting. * [60K, 64K) That's the correct cleanup. The only good news is, this error is only theoretical, as the target extent map is always pinned, thus we should directly grab it from memory, other than reading it from the disk. [FIX] Instead of calling btrfs_mark_ordered_io_finished() for the whole folio range, which can touch ranges we should not touch, instead move the error handling inside extent_writepage_io(). So that we can cleanup exact sectors that ought to be submitted but failed. This provides much more accurate cleanup, avoiding the double accounting. CC: [email protected] # 5.15+ Signed-off-by: Qu Wenruo <[email protected]> Signed-off-by: David Sterba <[email protected]>
[BUG] If we failed to compress the range, or cannot reserve a large enough data extent (e.g. too fragmented free space), we will fall back to submit_uncompressed_range(). But inside submit_uncompressed_range(), run_delalloc_cow() can also fail due to -ENOSPC or any other error. In that case there are 3 bugs in the error handling: 1) Double freeing for the same ordered extent This can lead to crash due to ordered extent double accounting 2) Start/end writeback without updating the subpage writeback bitmap 3) Unlock the folio without clear the subpage lock bitmap Both bugs 2) and 3) will crash the kernel if the btrfs block size is smaller than folio size, as the next time the folio gets writeback/lock updates, subpage will find the bitmap already have the range set, triggering an ASSERT(). [CAUSE] Bug 1) happens in the following call chain: submit_uncompressed_range() |- run_delalloc_cow() | |- cow_file_range() | |- btrfs_reserve_extent() | Failed with -ENOSPC or whatever error | |- btrfs_clean_up_ordered_extents() | |- btrfs_mark_ordered_io_finished() | Which cleans all the ordered extents in the async_extent range. | |- btrfs_mark_ordered_io_finished() Which cleans the folio range. The finished ordered extents may not be immediately removed from the ordered io tree, as they are removed inside a work queue. So the second btrfs_mark_ordered_io_finished() may find the finished but not-yet-removed ordered extents, and double free them. Furthermore, the second btrfs_mark_ordered_io_finished() is not subpage compatible, as it uses fixed folio_pos() with PAGE_SIZE, which can cover other ordered extents. Bugs 2) and 3) are more straightforward, btrfs just calls folio_unlock(), folio_start_writeback() and folio_end_writeback(), other than the helpers which handle subpage cases. [FIX] For bug 1) since the first btrfs_cleanup_ordered_extents() call is handling the whole range, we should not do the second btrfs_mark_ordered_io_finished() call. And for the first btrfs_cleanup_ordered_extents(), we no longer need to pass the @locked_page parameter, as we are already in the async extent context, thus will never rely on the error handling inside btrfs_run_delalloc_range(). So just let the btrfs_clean_up_ordered_extents() handle every folio equally. For bug 2) we should not even call folio_start_writeback()/folio_end_writeback() anymore. As the error handling protocol, cow_file_range() should clear dirty flag and start/finish the writeback for the whole range passed in. For bug 3) just change the folio_unlock() to btrfs_folio_end_lock() helper. Reviewed-by: Boris Burkov <[email protected]> Signed-off-by: Qu Wenruo <[email protected]> Signed-off-by: David Sterba <[email protected]>
[BUG] When testing with COW fixup marked as BUG_ON() (this is involved with the new pin_user_pages*() change, which should not result new out-of-band dirty pages), I hit a crash triggered by the BUG_ON() from hitting COW fixup path. This BUG_ON() happens just after a failed btrfs_run_delalloc_range(): BTRFS error (device dm-2): failed to run delalloc range, root 348 ino 405 folio 65536 submit_bitmap 6-15 start 90112 len 106496: -28 ------------[ cut here ]------------ kernel BUG at fs/btrfs/extent_io.c:1444! Internal error: Oops - BUG: 00000000f2000800 [#1] SMP CPU: 0 UID: 0 PID: 434621 Comm: kworker/u24:8 Tainted: G OE 6.12.0-rc7-custom+ #86 Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022 Workqueue: events_unbound btrfs_async_reclaim_data_space [btrfs] pc : extent_writepage_io+0x2d4/0x308 [btrfs] lr : extent_writepage_io+0x2d4/0x308 [btrfs] Call trace: extent_writepage_io+0x2d4/0x308 [btrfs] extent_writepage+0x218/0x330 [btrfs] extent_write_cache_pages+0x1d4/0x4b0 [btrfs] btrfs_writepages+0x94/0x150 [btrfs] do_writepages+0x74/0x190 filemap_fdatawrite_wbc+0x88/0xc8 start_delalloc_inodes+0x180/0x3b0 [btrfs] btrfs_start_delalloc_roots+0x174/0x280 [btrfs] shrink_delalloc+0x114/0x280 [btrfs] flush_space+0x250/0x2f8 [btrfs] btrfs_async_reclaim_data_space+0x180/0x228 [btrfs] process_one_work+0x164/0x408 worker_thread+0x25c/0x388 kthread+0x100/0x118 ret_from_fork+0x10/0x20 Code: aa1403e1 9402f3ef aa1403e0 9402f36f (d4210000) ---[ end trace 0000000000000000 ]--- [CAUSE] That failure is mostly from cow_file_range(), where we can hit -ENOSPC. Although the -ENOSPC is already a bug related to our space reservation code, let's just focus on the error handling. For example, we have the following dirty range [0, 64K) of an inode, with 4K sector size and 4K page size: 0 16K 32K 48K 64K |///////////////////////////////////////| |#######################################| Where |///| means page are still dirty, and |###| means the extent io tree has EXTENT_DELALLOC flag. - Enter extent_writepage() for page 0 - Enter btrfs_run_delalloc_range() for range [0, 64K) - Enter cow_file_range() for range [0, 64K) - Function btrfs_reserve_extent() only reserved one 16K extent So we created extent map and ordered extent for range [0, 16K) 0 16K 32K 48K 64K |////////|//////////////////////////////| |<- OE ->|##############################| And range [0, 16K) has its delalloc flag cleared. But since we haven't yet submit any bio, involved 4 pages are still dirty. - Function btrfs_reserve_extent() returns with -ENOSPC Now we have to run error cleanup, which will clear all EXTENT_DELALLOC* flags and clear the dirty flags for the remaining ranges: 0 16K 32K 48K 64K |////////| | | | | Note that range [0, 16K) still has its pages dirty. - Some time later, writeback is triggered again for the range [0, 16K) since the page range still has dirty flags. - btrfs_run_delalloc_range() will do nothing because there is no EXTENT_DELALLOC flag. - extent_writepage_io() finds page 0 has no ordered flag Which falls into the COW fixup path, triggering the BUG_ON(). Unfortunately this error handling bug dates back to the introduction of btrfs. Thankfully with the abuse of COW fixup, at least it won't crash the kernel. [FIX] Instead of immediately unlocking the extent and folios, we keep the extent and folios locked until either erroring out or the whole delalloc range finished. When the whole delalloc range finished without error, we just unlock the whole range with PAGE_SET_ORDERED (and PAGE_UNLOCK for !keep_locked cases), with EXTENT_DELALLOC and EXTENT_LOCKED cleared. And the involved folios will be properly submitted, with their dirty flags cleared during submission. For the error path, it will be a little more complex: - The range with ordered extent allocated (range (1)) We only clear the EXTENT_DELALLOC and EXTENT_LOCKED, as the remaining flags are cleaned up by btrfs_mark_ordered_io_finished()->btrfs_finish_one_ordered(). For folios we finish the IO (clear dirty, start writeback and immediately finish the writeback) and unlock the folios. - The range with reserved extent but no ordered extent (range(2)) - The range we never touched (range(3)) For both range (2) and range(3) the behavior is not changed. Now even if cow_file_range() failed halfway with some successfully reserved extents/ordered extents, we will keep all folios clean, so there will be no future writeback triggered on them. CC: [email protected] Reviewed-by: Boris Burkov <[email protected]> Signed-off-by: Qu Wenruo <[email protected]> Signed-off-by: David Sterba <[email protected]>
[BUG] With CONFIG_DEBUG_VM set, test case generic/476 has some chance to crash with the following VM_BUG_ON_FOLIO(): BTRFS error (device dm-3): cow_file_range failed, start 1146880 end 1253375 len 106496 ret -28 BTRFS error (device dm-3): run_delalloc_nocow failed, start 1146880 end 1253375 len 106496 ret -28 page: refcount:4 mapcount:0 mapping:00000000592787cc index:0x12 pfn:0x10664 aops:btrfs_aops [btrfs] ino:101 dentry name(?):"f1774" flags: 0x2fffff80004028(uptodate|lru|private|node=0|zone=2|lastcpupid=0xfffff) page dumped because: VM_BUG_ON_FOLIO(!folio_test_locked(folio)) ------------[ cut here ]------------ kernel BUG at mm/page-writeback.c:2992! Internal error: Oops - BUG: 00000000f2000800 [#1] SMP CPU: 2 UID: 0 PID: 3943513 Comm: kworker/u24:15 Tainted: G OE 6.12.0-rc7-custom+ #87 Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022 Workqueue: events_unbound btrfs_async_reclaim_data_space [btrfs] pc : folio_clear_dirty_for_io+0x128/0x258 lr : folio_clear_dirty_for_io+0x128/0x258 Call trace: folio_clear_dirty_for_io+0x128/0x258 btrfs_folio_clamp_clear_dirty+0x80/0xd0 [btrfs] __process_folios_contig+0x154/0x268 [btrfs] extent_clear_unlock_delalloc+0x5c/0x80 [btrfs] run_delalloc_nocow+0x5f8/0x760 [btrfs] btrfs_run_delalloc_range+0xa8/0x220 [btrfs] writepage_delalloc+0x230/0x4c8 [btrfs] extent_writepage+0xb8/0x358 [btrfs] extent_write_cache_pages+0x21c/0x4e8 [btrfs] btrfs_writepages+0x94/0x150 [btrfs] do_writepages+0x74/0x190 filemap_fdatawrite_wbc+0x88/0xc8 start_delalloc_inodes+0x178/0x3a8 [btrfs] btrfs_start_delalloc_roots+0x174/0x280 [btrfs] shrink_delalloc+0x114/0x280 [btrfs] flush_space+0x250/0x2f8 [btrfs] btrfs_async_reclaim_data_space+0x180/0x228 [btrfs] process_one_work+0x164/0x408 worker_thread+0x25c/0x388 kthread+0x100/0x118 ret_from_fork+0x10/0x20 Code: 910a8021 a90363f7 a9046bf9 94012379 (d4210000) ---[ end trace 0000000000000000 ]--- [CAUSE] The first two lines of extra debug messages show the problem is caused by the error handling of run_delalloc_nocow(). E.g. we have the following dirtied range (4K blocksize 4K page size): 0 16K 32K |//////////////////////////////////////| | Pre-allocated | And the range [0, 16K) has a preallocated extent. - Enter run_delalloc_nocow() for range [0, 16K) Which found range [0, 16K) is preallocated, can do the proper NOCOW write. - Enter fallback_to_fow() for range [16K, 32K) Since the range [16K, 32K) is not backed by preallocated extent, we have to go COW. - cow_file_range() failed for range [16K, 32K) So cow_file_range() will do the clean up by clearing folio dirty, unlock the folios. Now the folios in range [16K, 32K) is unlocked. - Enter extent_clear_unlock_delalloc() from run_delalloc_nocow() Which is called with PAGE_START_WRITEBACK to start page writeback. But folios can only be marked writeback when it's properly locked, thus this triggered the VM_BUG_ON_FOLIO(). Furthermore there is another hidden but common bug that run_delalloc_nocow() is not clearing the folio dirty flags in its error handling path. This is the common bug shared between run_delalloc_nocow() and cow_file_range(). [FIX] - Clear folio dirty for range [@start, @cur_offset) Introduce a helper, cleanup_dirty_folios(), which will find and lock the folio in the range, clear the dirty flag and start/end the writeback, with the extra handling for the @locked_folio. - Introduce a helper to clear folio dirty, start and end writeback - Introduce a helper to record the last failed COW range end This is to trace which range we should skip, to avoid double unlocking. - Skip the failed COW range for the error handling CC: [email protected] Reviewed-by: Boris Burkov <[email protected]> Signed-off-by: Qu Wenruo <[email protected]> Signed-off-by: David Sterba <[email protected]>
We're dumping the locked bitmap into the @checked_bitmap variable, printing incorrect values during debug. Thankfully even during my development I haven't hit a case where I need to dump the locked bitmap. But for the sake of consistency, fix it by dupping the locked bitmap into @locked_bitmap variable for output. Fixes: 75258f2 ("btrfs: subpage: dump extra subpage bitmaps for debug") Reviewed-by: Boris Burkov <[email protected]> Signed-off-by: Qu Wenruo <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
For btrfs_folio_assert_not_dirty() and btrfs_folio_set_lock(), we call bitmap_test_range_all_zero() to ensure the involved range has no dirty/lock bit already set. However with my recent enhanced delalloc range error handling, I was hitting the ASSERT() inside btrfs_folio_set_lock(), and it turns out that some error handling path is not properly updating the folio flags. So add some extra dumping for the ASSERTs to dump the involved bitmap to help debug. Reviewed-by: Boris Burkov <[email protected]> Signed-off-by: Qu Wenruo <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
All the error handling bugs I hit so far are all -ENOSPC from either: - cow_file_range() - run_delalloc_nocow() - submit_uncompressed_range() Previously when those functions failed, there was no error message at all, making the debugging much harder. So here we introduce extra error messages for: - cow_file_range() - run_delalloc_nocow() - submit_uncompressed_range() - writepage_delalloc() when btrfs_run_delalloc_range() failed - extent_writepage() when extent_writepage_io() failed One example of the new debug error messages is the following one: run fstests generic/750 at 2024-12-08 12:41:41 BTRFS: device fsid 461b25f5-e240-4543-8deb-e7c2bd01a6d3 devid 1 transid 8 /dev/mapper/test-scratch1 (253:4) scanned by mount (2436600) BTRFS info (device dm-4): first mount of filesystem 461b25f5-e240-4543-8deb-e7c2bd01a6d3 BTRFS info (device dm-4): using crc32c (crc32c-arm64) checksum algorithm BTRFS info (device dm-4): forcing free space tree for sector size 4096 with page size 65536 BTRFS info (device dm-4): using free-space-tree BTRFS warning (device dm-4): read-write for sector size 4096 with page size 65536 is experimental BTRFS info (device dm-4): checking UUID tree BTRFS error (device dm-4): cow_file_range failed, root=363 inode=412 start=503808 len=98304: -28 BTRFS error (device dm-4): run_delalloc_nocow failed, root=363 inode=412 start=503808 len=98304: -28 BTRFS error (device dm-4): failed to run delalloc range, root=363 ino=412 folio=458752 submit_bitmap=11-15 start=503808 len=98304: -28 Which shows an error from cow_file_range() which is called inside a nocow write attempt, along with the extra bitmap from writepage_delalloc(). Reviewed-by: Boris Burkov <[email protected]> Signed-off-by: Qu Wenruo <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
…dered_extents() The function btrfs_cleanup_ordered_extents() is only called in error handling path, and the last caller with a @locked_folio parameter was removed to fix a bug in the btrfs_run_delalloc_range() error handling. There is no need to pass @locked_folio parameter anymore. Reviewed-by: Boris Burkov <[email protected]> Signed-off-by: Qu Wenruo <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
Add an io_uring interface for encoded writes, with the same parameters as the BTRFS_IOC_ENCODED_WRITE ioctl. As with the encoded reads code, there's a test program for this at https://github.com/maharmstone/io_uring-encoded, and I'll get this worked into an fstest. How io_uring works is that it initially calls btrfs_uring_cmd with the IO_URING_F_NONBLOCK flag set, and if we return -EAGAIN it tries again in a kthread with the flag cleared. Ideally we'd honour this and call try_lock etc., but there's still a lot of work to be done to create non-blocking versions of all the functions in our write path. Instead, just validate the input in btrfs_uring_encoded_write() on the first pass and return -EAGAIN, with a view to properly optimizing the optimistic path later on. Signed-off-by: Mark Harmstone <[email protected]> Signed-off-by: David Sterba <[email protected]>
RAID stripe-tree is an incompatible feature not a read-only compatible, so set the incompat flag not a compat_ro one in the selftest code. Subsequent changes in btrfs_delete_raid_extent() will start checking for this flag. Signed-off-by: Johannes Thumshirn <[email protected]> Signed-off-by: David Sterba <[email protected]>
Even if the RAID stripe-tree is not enabled in the filesystem, do_free_extent_accounting() still calls into btrfs_delete_raid_extent(). Check if the extent in question is on a block-group that has a profile which is used by RAID stripe-tree before attempting to delete a stripe extent. Return early if it doesn't, otherwise we're doing a unnecessary search. Reviewed-by: Filipe Manana <[email protected]> Signed-off-by: Johannes Thumshirn <[email protected]> Signed-off-by: David Sterba <[email protected]>
When modifying a RAID stripe-extent, ASSERT() that the length of the new RAID stripe-extent is always greater than 0. Reviewed-by: Filipe Manana <[email protected]> Signed-off-by: Johannes Thumshirn <[email protected]> Signed-off-by: David Sterba <[email protected]>
When deleting the front of a RAID stripe-extent the delete code miscalculates the size on how much to pad the remaining extent part in the front. Fix the calculation so we're always having the sizes we expect. Reviewed-by: Filipe Manana <[email protected]> Signed-off-by: Johannes Thumshirn <[email protected]> Signed-off-by: David Sterba <[email protected]>
Fix tail delete of RAID stripe-extents, if there is a range to be deleted as well after the tail delete of the extent. Reviewed-by: Filipe Manana <[email protected]> Signed-off-by: Johannes Thumshirn <[email protected]> Signed-off-by: David Sterba <[email protected]>
When a user requests the deletion of a range that spans multiple stripe extents and btrfs_search_slot() returns us the second RAID stripe extent, we need to pick the previous item and truncate it, if there's still a range to delete left, move on to the next item. The following diagram illustrates the operation: |--- RAID Stripe Extent ---||--- RAID Stripe Extent ---| |--- keep ---|--- drop ---| While at it, comment the trivial case of a whole item delete as well. Signed-off-by: Johannes Thumshirn <[email protected]> Signed-off-by: David Sterba <[email protected]>
If the stripe extent we want to delete starts before the range we want to delete and ends after the range we want to delete we're punching a hole in the stripe extent: |--- RAID Stripe Extent ---| | keep |--- drop ---| keep | This means we need to a) truncate the existing item and b) create a second item for the remaining range. Signed-off-by: Johannes Thumshirn <[email protected]> Signed-off-by: David Sterba <[email protected]>
Don't use btrfs_set_item_key_safe() to modify the keys in the RAID stripe-tree, as this can lead to corruption of the tree, which is caught by the checks in btrfs_set_item_key_safe(): BTRFS info (device nvme1n1): leaf 49168384 gen 15 total ptrs 194 free space 8329 owner 12 BTRFS info (device nvme1n1): refs 2 lock_owner 1030 current 1030 [ snip ] item 105 key (354549760 230 20480) itemoff 14587 itemsize 16 stride 0 devid 5 physical 67502080 item 106 key (354631680 230 4096) itemoff 14571 itemsize 16 stride 0 devid 1 physical 88559616 item 107 key (354631680 230 32768) itemoff 14555 itemsize 16 stride 0 devid 1 physical 88555520 item 108 key (354717696 230 28672) itemoff 14539 itemsize 16 stride 0 devid 2 physical 67604480 [ snip ] BTRFS critical (device nvme1n1): slot 106 key (354631680 230 32768) new key (354635776 230 4096) ------------[ cut here ]------------ kernel BUG at fs/btrfs/ctree.c:2602! Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI CPU: 1 UID: 0 PID: 1055 Comm: fsstress Not tainted 6.13.0-rc1+ #1464 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014 RIP: 0010:btrfs_set_item_key_safe+0xf7/0x270 Code: <snip> RSP: 0018:ffffc90001337ab0 EFLAGS: 00010287 RAX: 0000000000000000 RBX: ffff8881115fd000 RCX: 0000000000000000 RDX: 0000000000000001 RSI: 0000000000000001 RDI: 00000000ffffffff RBP: ffff888110ed6f50 R08: 00000000ffffefff R09: ffffffff8244c500 R10: 00000000ffffefff R11: 00000000ffffffff R12: ffff888100586000 R13: 00000000000000c9 R14: ffffc90001337b1f R15: ffff888110f23b58 FS: 00007f7d75c72740(0000) GS:ffff88813bd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fa811652c60 CR3: 0000000111398001 CR4: 0000000000370eb0 Call Trace: <TASK> ? __die_body.cold+0x14/0x1a ? die+0x2e/0x50 ? do_trap+0xca/0x110 ? do_error_trap+0x65/0x80 ? btrfs_set_item_key_safe+0xf7/0x270 ? exc_invalid_op+0x50/0x70 ? btrfs_set_item_key_safe+0xf7/0x270 ? asm_exc_invalid_op+0x1a/0x20 ? btrfs_set_item_key_safe+0xf7/0x270 btrfs_partially_delete_raid_extent+0xc4/0xe0 btrfs_delete_raid_extent+0x227/0x240 __btrfs_free_extent.isra.0+0x57f/0x9c0 ? exc_coproc_segment_overrun+0x40/0x40 __btrfs_run_delayed_refs+0x2fa/0xe80 btrfs_run_delayed_refs+0x81/0xe0 btrfs_commit_transaction+0x2dd/0xbe0 ? preempt_count_add+0x52/0xb0 btrfs_sync_file+0x375/0x4c0 do_fsync+0x39/0x70 __x64_sys_fsync+0x13/0x20 do_syscall_64+0x54/0x110 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7f7d7550ef90 Code: <snip> RSP: 002b:00007ffd70237248 EFLAGS: 00000202 ORIG_RAX: 000000000000004a RAX: ffffffffffffffda RBX: 0000000000000004 RCX: 00007f7d7550ef90 RDX: 000000000000013a RSI: 000000000040eb28 RDI: 0000000000000004 RBP: 000000000000001b R08: 0000000000000078 R09: 00007ffd7023725c R10: 00007f7d75400390 R11: 0000000000000202 R12: 028f5c28f5c28f5c R13: 8f5c28f5c28f5c29 R14: 000000000040b520 R15: 00007f7d75c726c8 </TASK> While the root cause of the tree order corruption isn't clear, using btrfs_duplicate_item() to copy the item and then adjusting both the key and the per-device physical addresses is a safe way to counter this problem. Signed-off-by: Johannes Thumshirn <[email protected]> Signed-off-by: David Sterba <[email protected]>
Commit 5e72aab ("btrfs: return ENODATA in case RST lookup fails") changed btrfs_get_raid_extent_offset()'s return value to ENODATA in case the RAID stripe-tree lookup failed. Adjust the test cases which check for absence of a given range to check for ENODATA as return value in this case. Reviewed-by: Filipe Manana <[email protected]> Signed-off-by: Johannes Thumshirn <[email protected]> Signed-off-by: David Sterba <[email protected]>
The selftests for partially deleting the start or tail of RAID stripe-extents split these extents in half. This can hide errors in the calculation, so don't split the RAID stripe-extents in half but delete the first or last 16K of the 64K extents. Reviewed-by: Filipe Manana <[email protected]> Signed-off-by: Johannes Thumshirn <[email protected]> Signed-off-by: David Sterba <[email protected]>
Add a selftest for RAID stripe-tree deletion with a delete range spanning two items, so that we're punching a hole into two adjacent RAID stripe extents truncating the first and "moving" the second to the right. The following diagram illustrates the operation: |--- RAID Stripe Extent ---||--- RAID Stripe Extent ---| |----- keep -----|--- drop ---|----- keep ----| Reviewed-by: Filipe Manana <[email protected]> Signed-off-by: Johannes Thumshirn <[email protected]> Signed-off-by: David Sterba <[email protected]>
…e extents Add a selftest for punching a hole into a RAID stripe extent. The test create an 1M extent and punches a 64k bytes long hole at offset of 32k from the start of the extent. Afterwards it verifies the start and length of both resulting new extents "left" and "right" as well as the absence of the hole. Reviewed-by: Filipe Manana <[email protected]> Signed-off-by: Johannes Thumshirn <[email protected]> Signed-off-by: David Sterba <[email protected]>
…ents Test creating a range of three RAID stripe-extents and then punch a hole in the middle, deleting all of the middle extents and partially deleting the "book ends". Reviewed-by: Filipe Manana <[email protected]> Signed-off-by: Johannes Thumshirn <[email protected]> Signed-off-by: David Sterba <[email protected]>
Add a selftest creating three extents and then deleting two out of the three extents. Reviewed-by: Filipe Manana <[email protected]> Signed-off-by: Johannes Thumshirn <[email protected]> Signed-off-by: David Sterba <[email protected]>
When COWing a relocation tree path, at relocation.c:replace_path(), we can trigger a lockdep splat while we are in the btrfs_search_slot() call against the relocation root. This happens in that callchain at ctree.c:read_block_for_search() when we happen to find a child extent buffer already loaded through the fs tree with a lockdep class set to the fs tree. So when we attempt to lock that extent buffer through a relocation tree we have to reset the lockdep class to the class for a relocation tree, since a relocation tree has extent buffers that used to belong to a fs tree and may currently be already loaded (we swap extent buffers between the two trees at the end of replace_path()). However we are missing calls to btrfs_maybe_reset_lockdep_class() to reset the lockdep class at ctree.c:read_block_for_search() before we read lock an extent buffer, just like we did for btrfs_search_slot() in commit b40130b ("btrfs: fix lockdep splat with reloc root extent buffers"). So add the missing btrfs_maybe_reset_lockdep_class() calls before the attempts to read lock an extent buffer at ctree.c:read_block_for_search(). The lockdep splat was reported by syzbot and it looks like this: ====================================================== WARNING: possible circular locking dependency detected 6.13.0-rc5-syzkaller-00163-gab75170520d4 #0 Not tainted ------------------------------------------------------ syz.0.0/5335 is trying to acquire lock: ffff8880545dbc38 (btrfs-tree-01){++++}-{4:4}, at: btrfs_tree_read_lock_nested+0x2f/0x250 fs/btrfs/locking.c:146 but task is already holding lock: ffff8880545dba58 (btrfs-treloc-02/1){+.+.}-{4:4}, at: btrfs_tree_lock_nested+0x2f/0x250 fs/btrfs/locking.c:189 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (btrfs-treloc-02/1){+.+.}-{4:4}: reacquire_held_locks+0x3eb/0x690 kernel/locking/lockdep.c:5374 __lock_release kernel/locking/lockdep.c:5563 [inline] lock_release+0x396/0xa30 kernel/locking/lockdep.c:5870 up_write+0x79/0x590 kernel/locking/rwsem.c:1629 btrfs_force_cow_block+0x14b3/0x1fd0 fs/btrfs/ctree.c:660 btrfs_cow_block+0x371/0x830 fs/btrfs/ctree.c:755 btrfs_search_slot+0xc01/0x3180 fs/btrfs/ctree.c:2153 replace_path+0x1243/0x2740 fs/btrfs/relocation.c:1224 merge_reloc_root+0xc46/0x1ad0 fs/btrfs/relocation.c:1692 merge_reloc_roots+0x3b3/0x980 fs/btrfs/relocation.c:1942 relocate_block_group+0xb0a/0xd40 fs/btrfs/relocation.c:3754 btrfs_relocate_block_group+0x77d/0xd90 fs/btrfs/relocation.c:4087 btrfs_relocate_chunk+0x12c/0x3b0 fs/btrfs/volumes.c:3494 __btrfs_balance+0x1b0f/0x26b0 fs/btrfs/volumes.c:4278 btrfs_balance+0xbdc/0x10c0 fs/btrfs/volumes.c:4655 btrfs_ioctl_balance+0x493/0x7c0 fs/btrfs/ioctl.c:3670 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:906 [inline] __se_sys_ioctl+0xf5/0x170 fs/ioctl.c:892 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f -> #1 (btrfs-tree-01/1){+.+.}-{4:4}: lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5849 down_write_nested+0xa2/0x220 kernel/locking/rwsem.c:1693 btrfs_tree_lock_nested+0x2f/0x250 fs/btrfs/locking.c:189 btrfs_init_new_buffer fs/btrfs/extent-tree.c:5052 [inline] btrfs_alloc_tree_block+0x41c/0x1440 fs/btrfs/extent-tree.c:5132 btrfs_force_cow_block+0x526/0x1fd0 fs/btrfs/ctree.c:573 btrfs_cow_block+0x371/0x830 fs/btrfs/ctree.c:755 btrfs_search_slot+0xc01/0x3180 fs/btrfs/ctree.c:2153 btrfs_insert_empty_items+0x9c/0x1a0 fs/btrfs/ctree.c:4351 btrfs_insert_empty_item fs/btrfs/ctree.h:688 [inline] btrfs_insert_inode_ref+0x2bb/0xf80 fs/btrfs/inode-item.c:330 btrfs_rename_exchange fs/btrfs/inode.c:7990 [inline] btrfs_rename2+0xcb7/0x2b90 fs/btrfs/inode.c:8374 vfs_rename+0xbdb/0xf00 fs/namei.c:5067 do_renameat2+0xd94/0x13f0 fs/namei.c:5224 __do_sys_renameat2 fs/namei.c:5258 [inline] __se_sys_renameat2 fs/namei.c:5255 [inline] __x64_sys_renameat2+0xce/0xe0 fs/namei.c:5255 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f -> #0 (btrfs-tree-01){++++}-{4:4}: check_prev_add kernel/locking/lockdep.c:3161 [inline] check_prevs_add kernel/locking/lockdep.c:3280 [inline] validate_chain+0x18ef/0x5920 kernel/locking/lockdep.c:3904 __lock_acquire+0x1397/0x2100 kernel/locking/lockdep.c:5226 lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5849 down_read_nested+0xb5/0xa50 kernel/locking/rwsem.c:1649 btrfs_tree_read_lock_nested+0x2f/0x250 fs/btrfs/locking.c:146 btrfs_tree_read_lock fs/btrfs/locking.h:188 [inline] read_block_for_search+0x718/0xbb0 fs/btrfs/ctree.c:1610 btrfs_search_slot+0x1274/0x3180 fs/btrfs/ctree.c:2237 replace_path+0x1243/0x2740 fs/btrfs/relocation.c:1224 merge_reloc_root+0xc46/0x1ad0 fs/btrfs/relocation.c:1692 merge_reloc_roots+0x3b3/0x980 fs/btrfs/relocation.c:1942 relocate_block_group+0xb0a/0xd40 fs/btrfs/relocation.c:3754 btrfs_relocate_block_group+0x77d/0xd90 fs/btrfs/relocation.c:4087 btrfs_relocate_chunk+0x12c/0x3b0 fs/btrfs/volumes.c:3494 __btrfs_balance+0x1b0f/0x26b0 fs/btrfs/volumes.c:4278 btrfs_balance+0xbdc/0x10c0 fs/btrfs/volumes.c:4655 btrfs_ioctl_balance+0x493/0x7c0 fs/btrfs/ioctl.c:3670 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:906 [inline] __se_sys_ioctl+0xf5/0x170 fs/ioctl.c:892 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f other info that might help us debug this: Chain exists of: btrfs-tree-01 --> btrfs-tree-01/1 --> btrfs-treloc-02/1 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(btrfs-treloc-02/1); lock(btrfs-tree-01/1); lock(btrfs-treloc-02/1); rlock(btrfs-tree-01); *** DEADLOCK *** 8 locks held by syz.0.0/5335: #0: ffff88801e3ae420 (sb_writers#13){.+.+}-{0:0}, at: mnt_want_write_file+0x5e/0x200 fs/namespace.c:559 #1: ffff888052c760d0 (&fs_info->reclaim_bgs_lock){+.+.}-{4:4}, at: __btrfs_balance+0x4c2/0x26b0 fs/btrfs/volumes.c:4183 #2: ffff888052c74850 (&fs_info->cleaner_mutex){+.+.}-{4:4}, at: btrfs_relocate_block_group+0x775/0xd90 fs/btrfs/relocation.c:4086 #3: ffff88801e3ae610 (sb_internal#2){.+.+}-{0:0}, at: merge_reloc_root+0xf11/0x1ad0 fs/btrfs/relocation.c:1659 #4: ffff888052c76470 (btrfs_trans_num_writers){++++}-{0:0}, at: join_transaction+0x405/0xda0 fs/btrfs/transaction.c:288 #5: ffff888052c76498 (btrfs_trans_num_extwriters){++++}-{0:0}, at: join_transaction+0x405/0xda0 fs/btrfs/transaction.c:288 #6: ffff8880545db878 (btrfs-tree-01/1){+.+.}-{4:4}, at: btrfs_tree_lock_nested+0x2f/0x250 fs/btrfs/locking.c:189 #7: ffff8880545dba58 (btrfs-treloc-02/1){+.+.}-{4:4}, at: btrfs_tree_lock_nested+0x2f/0x250 fs/btrfs/locking.c:189 stack backtrace: CPU: 0 UID: 0 PID: 5335 Comm: syz.0.0 Not tainted 6.13.0-rc5-syzkaller-00163-gab75170520d4 #0 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120 print_circular_bug+0x13a/0x1b0 kernel/locking/lockdep.c:2074 check_noncircular+0x36a/0x4a0 kernel/locking/lockdep.c:2206 check_prev_add kernel/locking/lockdep.c:3161 [inline] check_prevs_add kernel/locking/lockdep.c:3280 [inline] validate_chain+0x18ef/0x5920 kernel/locking/lockdep.c:3904 __lock_acquire+0x1397/0x2100 kernel/locking/lockdep.c:5226 lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5849 down_read_nested+0xb5/0xa50 kernel/locking/rwsem.c:1649 btrfs_tree_read_lock_nested+0x2f/0x250 fs/btrfs/locking.c:146 btrfs_tree_read_lock fs/btrfs/locking.h:188 [inline] read_block_for_search+0x718/0xbb0 fs/btrfs/ctree.c:1610 btrfs_search_slot+0x1274/0x3180 fs/btrfs/ctree.c:2237 replace_path+0x1243/0x2740 fs/btrfs/relocation.c:1224 merge_reloc_root+0xc46/0x1ad0 fs/btrfs/relocation.c:1692 merge_reloc_roots+0x3b3/0x980 fs/btrfs/relocation.c:1942 relocate_block_group+0xb0a/0xd40 fs/btrfs/relocation.c:3754 btrfs_relocate_block_group+0x77d/0xd90 fs/btrfs/relocation.c:4087 btrfs_relocate_chunk+0x12c/0x3b0 fs/btrfs/volumes.c:3494 __btrfs_balance+0x1b0f/0x26b0 fs/btrfs/volumes.c:4278 btrfs_balance+0xbdc/0x10c0 fs/btrfs/volumes.c:4655 btrfs_ioctl_balance+0x493/0x7c0 fs/btrfs/ioctl.c:3670 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:906 [inline] __se_sys_ioctl+0xf5/0x170 fs/ioctl.c:892 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f1ac6985d29 Code: ff ff c3 (...) RSP: 002b:00007f1ac63fe038 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 00007f1ac6b76160 RCX: 00007f1ac6985d29 RDX: 0000000020000180 RSI: 00000000c4009420 RDI: 0000000000000007 RBP: 00007f1ac6a01b08 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 0000000000000001 R14: 00007f1ac6b76160 R15: 00007fffda145a88 </TASK> Reported-by: [email protected] Link: https://lore.kernel.org/linux-btrfs/[email protected]/ Fixes: 9978599 ("btrfs: reduce lock contention when eb cache miss for btree search") Signed-off-by: Filipe Manana <[email protected]> Reviewed-by: David Sterba <[email protected]>
…saction abort If while we are doing a direct IO write a transaction abort happens, we mark all existing ordered extents with the BTRFS_ORDERED_IOERR flag (done at btrfs_destroy_ordered_extents()), and then after that if we enter btrfs_split_ordered_extent() and the ordered extent has bytes left (meaning we have a bio that doesn't cover the whole ordered extent, see details at btrfs_extract_ordered_extent()), we will fail on the following assertion at btrfs_split_ordered_extent(): ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS)); because the BTRFS_ORDERED_IOERR flag is set and the definition of BTRFS_ORDERED_TYPE_FLAGS is just the union of all flags that identify the type of write (regular, nocow, prealloc, compressed, direct IO, encoded). Fix this by returning an error from btrfs_extract_ordered_extent() if we find the BTRFS_ORDERED_IOERR flag in the ordered extent. The error will be the error that resulted in the transaction abort or -EIO if no transaction abort happened. This was recently reported by syzbot with the following trace: FAULT_INJECTION: forcing a failure. name failslab, interval 1, probability 0, space 0, times 1 CPU: 0 UID: 0 PID: 5321 Comm: syz.0.0 Not tainted 6.13.0-rc5-syzkaller #0 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120 fail_dump lib/fault-inject.c:53 [inline] should_fail_ex+0x3b0/0x4e0 lib/fault-inject.c:154 should_failslab+0xac/0x100 mm/failslab.c:46 slab_pre_alloc_hook mm/slub.c:4072 [inline] slab_alloc_node mm/slub.c:4148 [inline] __do_kmalloc_node mm/slub.c:4297 [inline] __kmalloc_noprof+0xdd/0x4c0 mm/slub.c:4310 kmalloc_noprof include/linux/slab.h:905 [inline] kzalloc_noprof include/linux/slab.h:1037 [inline] btrfs_chunk_alloc_add_chunk_item+0x244/0x1100 fs/btrfs/volumes.c:5742 reserve_chunk_space+0x1ca/0x2c0 fs/btrfs/block-group.c:4292 check_system_chunk fs/btrfs/block-group.c:4319 [inline] do_chunk_alloc fs/btrfs/block-group.c:3891 [inline] btrfs_chunk_alloc+0x77b/0xf80 fs/btrfs/block-group.c:4187 find_free_extent_update_loop fs/btrfs/extent-tree.c:4166 [inline] find_free_extent+0x42d1/0x5810 fs/btrfs/extent-tree.c:4579 btrfs_reserve_extent+0x422/0x810 fs/btrfs/extent-tree.c:4672 btrfs_new_extent_direct fs/btrfs/direct-io.c:186 [inline] btrfs_get_blocks_direct_write+0x706/0xfa0 fs/btrfs/direct-io.c:321 btrfs_dio_iomap_begin+0xbb7/0x1180 fs/btrfs/direct-io.c:525 iomap_iter+0x697/0xf60 fs/iomap/iter.c:90 __iomap_dio_rw+0xeb9/0x25b0 fs/iomap/direct-io.c:702 btrfs_dio_write fs/btrfs/direct-io.c:775 [inline] btrfs_direct_write+0x610/0xa30 fs/btrfs/direct-io.c:880 btrfs_do_write_iter+0x2a0/0x760 fs/btrfs/file.c:1397 do_iter_readv_writev+0x600/0x880 vfs_writev+0x376/0xba0 fs/read_write.c:1050 do_pwritev fs/read_write.c:1146 [inline] __do_sys_pwritev2 fs/read_write.c:1204 [inline] __se_sys_pwritev2+0x196/0x2b0 fs/read_write.c:1195 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f1281f85d29 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f12819fe038 EFLAGS: 00000246 ORIG_RAX: 0000000000000148 RAX: ffffffffffffffda RBX: 00007f1282176080 RCX: 00007f1281f85d29 RDX: 0000000000000001 RSI: 0000000020000240 RDI: 0000000000000005 RBP: 00007f12819fe090 R08: 0000000000000000 R09: 0000000000000003 R10: 0000000000007000 R11: 0000000000000246 R12: 0000000000000002 R13: 0000000000000000 R14: 00007f1282176080 R15: 00007ffcb9e23328 </TASK> BTRFS error (device loop0 state A): Transaction aborted (error -12) BTRFS: error (device loop0 state A) in btrfs_chunk_alloc_add_chunk_item:5745: errno=-12 Out of memory BTRFS info (device loop0 state EA): forced readonly assertion failed: !(flags & ~BTRFS_ORDERED_TYPE_FLAGS), in fs/btrfs/ordered-data.c:1234 ------------[ cut here ]------------ kernel BUG at fs/btrfs/ordered-data.c:1234! Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN NOPTI CPU: 0 UID: 0 PID: 5321 Comm: syz.0.0 Not tainted 6.13.0-rc5-syzkaller #0 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 RIP: 0010:btrfs_split_ordered_extent+0xd8d/0xe20 fs/btrfs/ordered-data.c:1234 Code: 43 fd 90 0f 0b e8 43 c4 db fd 48 c7 c7 20 0c 4c 8c 48 c7 c6 80 0f 4c 8c 48 c7 c2 e0 0b 4c 8c b9 d2 04 00 00 e8 04 57 43 fd 90 <0f> 0b e8 1c c4 db fd eb 5b e8 15 c4 db fd 48 c7 c7 20 0c 4c 8c 48 RSP: 0018:ffffc9000d1df2b8 EFLAGS: 00010246 RAX: 0000000000000057 RBX: 000000000006a000 RCX: 9ce21886c4195300 RDX: 0000000000000000 RSI: 0000000080000000 RDI: 0000000000000000 RBP: 0000000000000091 R08: ffffffff817f0a3c R09: 1ffff92001a3bdf4 R10: dffffc0000000000 R11: fffff52001a3bdf5 R12: 1ffff1100a45f401 R13: ffff8880522fa018 R14: dffffc0000000000 R15: 000000000006a000 FS: 00007f12819fe6c0(0000) GS:ffff88801fc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000557750bd7da8 CR3: 00000000400ea000 CR4: 0000000000352ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> btrfs_extract_ordered_extent fs/btrfs/direct-io.c:702 [inline] btrfs_dio_submit_io+0x4be/0x6d0 fs/btrfs/direct-io.c:737 iomap_dio_submit_bio fs/iomap/direct-io.c:85 [inline] iomap_dio_bio_iter+0x1022/0x1740 fs/iomap/direct-io.c:447 __iomap_dio_rw+0x13b7/0x25b0 fs/iomap/direct-io.c:703 btrfs_dio_write fs/btrfs/direct-io.c:775 [inline] btrfs_direct_write+0x610/0xa30 fs/btrfs/direct-io.c:880 btrfs_do_write_iter+0x2a0/0x760 fs/btrfs/file.c:1397 do_iter_readv_writev+0x600/0x880 vfs_writev+0x376/0xba0 fs/read_write.c:1050 do_pwritev fs/read_write.c:1146 [inline] __do_sys_pwritev2 fs/read_write.c:1204 [inline] __se_sys_pwritev2+0x196/0x2b0 fs/read_write.c:1195 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f1281f85d29 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f12819fe038 EFLAGS: 00000246 ORIG_RAX: 0000000000000148 RAX: ffffffffffffffda RBX: 00007f1282176080 RCX: 00007f1281f85d29 RDX: 0000000000000001 RSI: 0000000020000240 RDI: 0000000000000005 RBP: 00007f12819fe090 R08: 0000000000000000 R09: 0000000000000003 R10: 0000000000007000 R11: 0000000000000246 R12: 0000000000000002 R13: 0000000000000000 R14: 00007f1282176080 R15: 00007ffcb9e23328 </TASK> Modules linked in: ---[ end trace 0000000000000000 ]--- RIP: 0010:btrfs_split_ordered_extent+0xd8d/0xe20 fs/btrfs/ordered-data.c:1234 Code: 43 fd 90 0f 0b e8 43 c4 db fd 48 c7 c7 20 0c 4c 8c 48 c7 c6 80 0f 4c 8c 48 c7 c2 e0 0b 4c 8c b9 d2 04 00 00 e8 04 57 43 fd 90 <0f> 0b e8 1c c4 db fd eb 5b e8 15 c4 db fd 48 c7 c7 20 0c 4c 8c 48 RSP: 0018:ffffc9000d1df2b8 EFLAGS: 00010246 RAX: 0000000000000057 RBX: 000000000006a000 RCX: 9ce21886c4195300 RDX: 0000000000000000 RSI: 0000000080000000 RDI: 0000000000000000 RBP: 0000000000000091 R08: ffffffff817f0a3c R09: 1ffff92001a3bdf4 R10: dffffc0000000000 R11: fffff52001a3bdf5 R12: 1ffff1100a45f401 R13: ffff8880522fa018 R14: dffffc0000000000 R15: 000000000006a000 FS: 00007f12819fe6c0(0000) GS:ffff88801fc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000557750bd7da8 CR3: 00000000400ea000 CR4: 0000000000352ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 In this case the transaction abort was due to (an injected) memory allocation failure when attempting to allocate a new chunk. Reported-by: [email protected] Link: https://lore.kernel.org/linux-btrfs/[email protected]/ Fixes: 52b1fdc ("btrfs: handle completed ordered extents in btrfs_split_ordered_extent") Reviewed-by: Qu Wenruo <[email protected]> Signed-off-by: Filipe Manana <[email protected]>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Keep this open, the build tests are hosted on github CI.