Skip to content

Commit

Permalink
Browse files Browse the repository at this point in the history
  • Loading branch information
bussilabbot committed Oct 14, 2024
0 parents commit 8fd41cd
Show file tree
Hide file tree
Showing 14 changed files with 53,560 additions and 0 deletions.
Empty file added .nojekyll
Empty file.
Binary file added MDRefine.pdf
Binary file not shown.
132 changes: 132 additions & 0 deletions MDRefine/MDRefinement.html
Original file line number Diff line number Diff line change
@@ -0,0 +1,132 @@
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1">
<meta name="generator" content="pdoc3 0.11.1">
<title>MDRefine.MDRefinement API documentation</title>
<meta name="description" content="Main tool: MDRefinement.
It refines MD-generated trajectories with customizable refinement.">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/13.0.0/sanitize.min.css" integrity="sha512-y1dtMcuvtTMJc1yPgEqF0ZjQbhnc/bFhyvIyVNb9Zk5mIGtqVaAB1Ttl28su8AvFMOY0EwRbAe+HCLqj6W7/KA==" crossorigin>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/13.0.0/typography.min.css" integrity="sha512-Y1DYSb995BAfxobCkKepB1BqJJTPrOp3zPL74AWFugHHmmdcvO+C48WLrUOlhGMc0QG7AE3f7gmvvcrmX2fDoA==" crossorigin>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/styles/default.min.css" crossorigin>
<style>:root{--highlight-color:#fe9}.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:1.5em;overflow:hidden}#sidebar > *:last-child{margin-bottom:2cm}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:2em 0 .50em 0}h3{font-size:1.4em;margin:1.6em 0 .7em 0}h4{margin:0;font-size:105%}h1:target,h2:target,h3:target,h4:target,h5:target,h6:target{background:var(--highlight-color);padding:.2em 0}a{color:#058;text-decoration:none;transition:color .2s ease-in-out}a:visited{color:#503}a:hover{color:#b62}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900;font-weight:bold}pre code{font-size:.8em;line-height:1.4em;padding:1em;display:block}code{background:#f3f3f3;font-family:"DejaVu Sans Mono",monospace;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{margin-top:.6em;font-weight:bold}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}dt:target .name{background:var(--highlight-color)}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}td{padding:0 .5em}.admonition{padding:.1em 1em;margin-bottom:1em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style>
<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%;height:100vh;overflow:auto;position:sticky;top:0}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul ul{padding-left:1em}.toc > ul > li{margin-top:.5em}}</style>
<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style>
<script defer src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/highlight.min.js" integrity="sha512-D9gUyxqja7hBtkWpPWGt9wfbfaMGVt9gnyCvYa+jojwwPHLCzUm5i8rpk7vD7wNee9bA35eYIjobYPaQuKS1MQ==" crossorigin></script>
<script>window.addEventListener('DOMContentLoaded', () => {
hljs.configure({languages: ['bash', 'css', 'diff', 'graphql', 'ini', 'javascript', 'json', 'plaintext', 'python', 'python-repl', 'rust', 'shell', 'sql', 'typescript', 'xml', 'yaml']});
hljs.highlightAll();
})</script>
</head>
<body>
<main>
<article id="content">
<header>
<h1 class="title">Module <code>MDRefine.MDRefinement</code></h1>
</header>
<section id="section-intro">
<p>Main tool: MDRefinement.
It refines MD-generated trajectories with customizable refinement.</p>
</section>
<section>
</section>
<section>
</section>
<section>
<h2 class="section-title" id="header-functions">Functions</h2>
<dl>
<dt id="MDRefine.MDRefinement.MDRefinement"><code class="name flex">
<span>def <span class="ident">MDRefinement</span></span>(<span>infos: dict, *, regularization: dict = None, stride: int = 1, starting_alpha: float = inf, starting_beta: float = inf, starting_gamma: float = inf, random_states=5, which_set: str = 'validation', gtol: float = 0.5, ftol: float = 0.05, results_folder_name: str = 'results', n_parallel_jobs: int = None)</span>
</code></dt>
<dd>
<div class="desc"><p>This is the main tool of the package: it loads data, searches for the optimal hyperparameters and minimizes the loss function on the whole data set
by using the opimized hyperparameters. The output variables are then saved in a folder; they include <code>input</code> values, <code>min_lambdas</code> (optimal lambda coefficients for Ensemble Refinement, when performed),
<code>result</code>, <code>hyper_search</code> (steps in the search for optimal hyperparameters) (<code>.csv</code> files) and the <code>.npy</code> arrays with the new weights determined in the refinement.</p>
<h2 id="parameters">Parameters</h2>
<dl>
<dt><strong><code>infos</code></strong> :&ensp;<code>dict</code></dt>
<dd>A dictionary of information used to load data with <code>load_data</code> (see in the Examples directory).</dd>
<dt><strong><code>regularization</code></strong> :&ensp;<code>dict</code></dt>
<dd>A dictionary which can include two keys: <code>force_field_reg</code> and <code>forward_model_reg</code>, to specify the regularizations to the force-field correction and the forward model, respectively;
the first key is either a string (among <code>plain l2</code>, <code>constraint 1</code>, <code>constraint 2</code>, <code>KL divergence</code>) or a user-defined
function which takes as input <code>pars_ff</code> and returns the regularization term to be multiplied by the hyperparameter <code>beta</code>;
the second key is a user-defined function which takes as input <code>pars_fm</code> and <code>forward_coeffs_0</code> (current and refined forward-model coefficients) and
returns the regularization term to be multiplied by the hyperparameter <code>gamma</code>.</dd>
<dt><strong><code>stride</code></strong> :&ensp;<code>int</code></dt>
<dd>The stride of the frames used to load data employed in search for optimal hyperparameters
(in order to reduce the computational cost, at the price of a lower representativeness of the ensembles).</dd>
<dt><strong><code>starting_alpha</code></strong>, <strong><code>starting_beta</code></strong>, <strong><code>starting_gamma</code></strong> :&ensp;<code>floats</code></dt>
<dd>Starting values of the hyperparameters (<code>np.inf</code> by default, namely no refinement in that direction).</dd>
<dt><strong><code>random_states</code></strong> :&ensp;<code>int</code> or <code>list</code> of <code>integers</code></dt>
<dd>Random states (i.e., seeds) used to split the data set in cross validation (if integer, then <code>random_states = np.arange(random_states)</code>.</dd>
<dt><strong><code>which_set</code></strong> :&ensp;<code>str</code></dt>
<dd>String chosen among <code>'training'</code>, <code>'validation'</code> or <code>'test'</code>, which specifies how to determine optimal hyperparameters:
if minimizing the (average) chi2 on the training set for <code>'training'</code>, on training observables and test frames for <code>'validation'</code>,
on test observables for <code>'test'</code>.</dd>
<dt><strong><code>gtol</code></strong> :&ensp;<code>float</code></dt>
<dd>Tolerance <code>gtol</code> (on the gradient) of scipy.optimize.minimize (0.5 by default).</dd>
<dt><strong><code>ftol</code></strong> :&ensp;<code>float</code></dt>
<dd>Tolerance <code>ftol</code> of scipy.optimize.minimize (0.05 by default).</dd>
<dt><strong><code>results_folder_name</code></strong> :&ensp;<code>str</code></dt>
<dd>String for the prefix of the folder where to save results; the complete folder name is <code>results_folder_name + '_' + time</code> where <code>time</code> is the current time
when the algorithm has finished, in order to uniquely identify the folder with the results.</dd>
<dt><strong><code>n_parallel_jobs</code></strong> :&ensp;<code>int</code></dt>
<dd>How many jobs are run in parallel (<code>None</code> by default).</dd>
</dl></div>
</dd>
<dt id="MDRefine.MDRefinement.save_txt"><code class="name flex">
<span>def <span class="ident">save_txt</span></span>(<span>input_values, Result, coeff_names, folder_name='Result')</span>
</code></dt>
<dd>
<div class="desc"><p>This is an internal tool of <code><a title="MDRefine.MDRefinement.MDRefinement" href="#MDRefine.MDRefinement.MDRefinement">MDRefinement()</a></code> used to save <code>input_values</code> and output <code>Result</code> as <code>csv</code> and <code>npy</code> files in a folder whose name is
<code>folder_name + '_' + date</code> where date is the current time when the computation ended (it uses <code>date_time</code>
to generate unique file name, on the assumption of a single folder name at given time).</p>
<h2 id="parameters">Parameters</h2>
<dl>
<dt><strong><code>input_values</code></strong> :&ensp;<code>dict</code></dt>
<dd>Dictionary with input values of the refinement, such as stride, starting values of the hyperparameters, random_states, which_set, tolerances (see <code><a title="MDRefine.MDRefinement.MDRefinement" href="#MDRefine.MDRefinement.MDRefinement">MDRefinement()</a></code>).</dd>
<dt><strong><code>Result</code></strong> :&ensp;<code>class instance</code></dt>
<dd>Class instance with the results of <code>minimizer</code> and the search for the optimal hyperparameters.</dd>
<dt><strong><code>coeff_names</code></strong> :&ensp;<code>list</code></dt>
<dd>List with the names of the coefficients (force-field and forward-model corrections).</dd>
<dt><strong><code>folder_name</code></strong> :&ensp;<code>str</code></dt>
<dd>String for the prefix of the folder name (by default, <code>'Result'</code>).</dd>
</dl></div>
</dd>
<dt id="MDRefine.MDRefinement.unwrap_2dict"><code class="name flex">
<span>def <span class="ident">unwrap_2dict</span></span>(<span>my_2dict)</span>
</code></dt>
<dd>
<div class="desc"><p>Tool to unwrap a 2-layer dictionary <code>my_2dict</code> into list of values and list of keys.</p></div>
</dd>
</dl>
</section>
<section>
</section>
</article>
<nav id="sidebar">
<div class="toc">
<ul></ul>
</div>
<ul id="index">
<li><h3>Super-module</h3>
<ul>
<li><code><a title="MDRefine" href="index.html">MDRefine</a></code></li>
</ul>
</li>
<li><h3><a href="#header-functions">Functions</a></h3>
<ul class="">
<li><code><a title="MDRefine.MDRefinement.MDRefinement" href="#MDRefine.MDRefinement.MDRefinement">MDRefinement</a></code></li>
<li><code><a title="MDRefine.MDRefinement.save_txt" href="#MDRefine.MDRefinement.save_txt">save_txt</a></code></li>
<li><code><a title="MDRefine.MDRefinement.unwrap_2dict" href="#MDRefine.MDRefinement.unwrap_2dict">unwrap_2dict</a></code></li>
</ul>
</li>
</ul>
</nav>
</main>
<footer id="footer">
<p>Generated by <a href="https://pdoc3.github.io/pdoc" title="pdoc: Python API documentation generator"><cite>pdoc</cite> 0.11.1</a>.</p>
</footer>
</body>
</html>
Loading

0 comments on commit 8fd41cd

Please sign in to comment.