-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
8758fed
commit 2d43445
Showing
1 changed file
with
316 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,316 @@ | ||
########################################################################################################################################## | ||
## emu (Dromaius novaehollandiae) demographic model | ||
## | ||
## Corey Bradshaw | ||
## [email protected] | ||
## Flinders University, September 2021 | ||
########################################################################################################################################## | ||
|
||
## functions | ||
# beta distribution shape parameter estimator function | ||
estBetaParams <- function(mu, var) { | ||
alpha <- ((1 - mu) / var - 1 / mu) * mu ^ 2 | ||
beta <- alpha * (1 / mu - 1) | ||
return(params = list(alpha = alpha, beta = beta)) | ||
} | ||
|
||
AICc <- function(...) { | ||
models <- list(...) | ||
num.mod <- length(models) | ||
AICcs <- numeric(num.mod) | ||
ns <- numeric(num.mod) | ||
ks <- numeric(num.mod) | ||
AICc.vec <- rep(0,num.mod) | ||
for (i in 1:num.mod) { | ||
if (length(models[[i]]$df.residual) == 0) n <- models[[i]]$dims$N else n <- length(models[[i]]$residuals) | ||
if (length(models[[i]]$df.residual) == 0) k <- sum(models[[i]]$dims$ncol) else k <- (length(models[[i]]$coeff))+1 | ||
AICcs[i] <- (-2*logLik(models[[i]])) + ((2*k*n)/(n-k-1)) | ||
ns[i] <- n | ||
ks[i] <- k | ||
AICc.vec[i] <- AICcs[i] | ||
} | ||
return(AICc.vec) | ||
} | ||
|
||
delta.AIC <- function(x) x - min(x) ## where x is a vector of AIC | ||
weight.AIC <- function(x) (exp(-0.5*x))/sum(exp(-0.5*x)) ## Where x is a vector of dAIC | ||
ch.dev <- function(x) ((( as.numeric(x$null.deviance) - as.numeric(x$deviance) )/ as.numeric(x$null.deviance))*100) ## % change in deviance, where x is glm object | ||
|
||
linreg.ER <- function(x,y) { # where x and y are vectors of the same length; calls AICc, delta.AIC, weight.AIC functions | ||
fit.full <- lm(y ~ x); fit.null <- lm(y ~ 1) | ||
AIC.vec <- c(AICc(fit.full),AICc(fit.null)) | ||
dAIC.vec <- delta.AIC(AIC.vec); wAIC.vec <- weight.AIC(dAIC.vec) | ||
ER <- wAIC.vec[1]/wAIC.vec[2] | ||
r.sq.adj <- as.numeric(summary(fit.full)[9]) | ||
return(c(ER,r.sq.adj)) | ||
} | ||
|
||
## source | ||
source("matrixOperators.r") | ||
|
||
|
||
############################## | ||
## DROMAIUS (novaehollandiae) (DN) | ||
|
||
# mass | ||
DN.mass <- 55 # Dromaius novaehollandiae (Sales et al. 2007 Avian and Poultry Biology Reviews 18:1–20) | ||
|
||
## large, flightless birds (medium) log10(D) = 3.65 – 0.82×log10(M in g) (https://doi.org/10.1111/ecog.04917) | ||
DN.D.pred <- (10^(3.65 - 0.82*(log10(DN.mass*1000))))/2 | ||
|
||
## max age | ||
## non-volant birds & mammals (Healy K et al. 2014 PRSB) | ||
## log10ls = 0.89 + 0.13log10m (mass in grams; ls = years) | ||
DN.age.max <- round(10^(0.89 + (0.13*log10(DN.mass*1000))), 0) | ||
DN.age.max <- 17 # adjusted downward | ||
|
||
## age vector | ||
DN.age.vec <- 0:DN.age.max | ||
|
||
## fertility | ||
DN.eggs <- 6.7 * 3.4 / 2 # /2 for females | ||
DN.hatch <- 0.406 * 0.419 | ||
DN.F.pred <- DN.eggs * DN.hatch | ||
|
||
## age at primiparity | ||
## alpha (https://dx.doi.org/10.1093%2Fgerona%2F62.2.149) | ||
DN.alpha <- ceiling(0.214*(DN.mass*1000)^0.303) # for birds | 4-5 years for ostriches (https://doi.org/10.1007/s11250-009-9428-2) | ||
DN.alpha <- 3 # (http://www.veterinaryworld.org/Vol.2/November/Behavior%20of%20Emu%20bird%20(Dromaius%20novaehollandiae).pdf) | ||
|
||
## define m function with age | ||
DN.m.vec <- c(rep(0, DN.alpha-1), rep(0.5*DN.F.pred, round(DN.alpha/2,0)), rep(DN.F.pred, (DN.age.max+1-((DN.alpha-1+round(DN.alpha/2,0)))))) | ||
DN.m.sd.vec <- 0.05*DN.m.vec | ||
plot(DN.age.vec, DN.m.vec, type="b", pch=19, xlab="age (yrs)", ylab="m") | ||
|
||
# fit sigmoidal function | ||
# logistic power function y = a / (1+(x/b)^c) | ||
DN.m.dat <- data.frame(DN.age.vec, DN.m.vec) | ||
param.init <- c(0.5, 4, -4) | ||
DN.fit.logp <- nls(DN.m.vec ~ a / (1+(DN.age.vec/b)^c), | ||
data = DN.m.dat, | ||
algorithm = "port", | ||
start = c(a = param.init[1], b = param.init[2], c = param.init[3]), | ||
trace = TRUE, | ||
nls.control(maxiter = 1000, tol = 1e-05, minFactor = 1/1024)) | ||
DN.fit.logp.summ <- summary(DN.fit.logp) | ||
plot(DN.age.vec, DN.m.vec, type="b", pch=19, xlab="age (yrs)", ylab="m") | ||
DN.age.vec.cont <- seq(0,max(DN.age.vec),1) | ||
DN.pred.p.mm <- coef(DN.fit.logp)[1] / (1+(DN.age.vec.cont/coef(DN.fit.logp)[2])^coef(DN.fit.logp)[3]) | ||
#DN.pred.p.mm <- ifelse(DN.pred.p.m > 1, 1, DN.pred.p.m) | ||
lines(DN.age.vec.cont, DN.pred.p.mm,lty=2,lwd=3,col="red") | ||
|
||
## survival | ||
## mean adult survival (McCarthy et al. 2008 Am Nat) | ||
## ln{-ln[s(t)]} = ln(a) + bln(M) + ln (t) | ||
ln.a.s <- -1.78; b.s <- -0.21 # for birds | ||
DN.s.tran <- ln.a.s + b.s*log(DN.mass*1000) + log(1) | ||
DN.s.ad.yr <- exp(-exp(DN.s.tran)) | ||
|
||
## calculate lmax from Dillingham et al. 2016 Ecol Appl 26:322-333 | ||
# lmax_DIM occurs when lmax.fun returns 0 | ||
lmax.fun <- function(lmax, alpha, s, ar.aT) { | ||
abs(lmax - exp(ar.aT*(alpha + s/(lmax-s) )^(-1) )) | ||
} | ||
# get.lmax calculates lmax_DIM for scalar alpha and scalar/vector s | ||
get.lmax <- function(alpha, s, ar.aT) { | ||
# Fixed alpha, allows a single value or vector for s | ||
lmax <- rep(NA, length(s)) | ||
for (i in 1:length(s)) { | ||
lmax[i] <- optimize(lmax.fun, c(1, 5), tol = 0.0001, alpha = alpha, s=s[i], ar.aT=ar.aT)$minimum | ||
} | ||
return(list(lmax=lmax, alpha=alpha, s=s, ar.aT=ar.aT)) | ||
} | ||
|
||
DN.lm.pred <- (get.lmax(alpha=DN.alpha, s=DN.s.ad.yr, ar.aT=1.107))$lmax # for birds | ||
DN.rm.pred <- log(DN.lm.pred) | ||
|
||
# Siler hazard h(x) (Gurven et al. 2007) | ||
a1 <- 1 - (0.55*DN.s.ad.yr) # initial infant mortality rate (also known as αt) | ||
b1 <- 0.105 # rate of mortality decline (also known as bt) | ||
a2 <- 1 - DN.s.ad.yr # age-independent mortality (exogenous mortality due to environment); also known as ct | ||
a3 <- 2.1e-04 # initial adult mortality rate (also known as βt) | ||
b3 <- 0.43 # rate of mortality increase | ||
longev <- DN.age.max | ||
x <- seq(0,longev,1) # age vector | ||
h.x <- a1 * exp(-b1*x) + a2 + a3 * exp(b3 * x) # Siler's hazard model | ||
plot(x,h.x,pch=19,type="l") | ||
plot(x,log(h.x),pch=19,type="l") | ||
l.x <- exp((-a1/b1) * (1 - exp(-b1*x))) * exp(-a2 * x) * exp(a3/b3 * (1 - exp(b3 * x))) # Siler's survival (proportion surviving) model | ||
init.pop <- 10000 | ||
lx <- round(init.pop*l.x,0) | ||
len.lx <- length(lx) | ||
dx <- lx[1:(len.lx-1)]-lx[2:len.lx] | ||
qx <- dx/lx[1:(length(lx)-1)] | ||
DN.Sx <- c(0.55*DN.s.ad.yr, 1 - qx) | ||
plot(x, DN.Sx, pch=19, type="l", xlab="age (years)", ylab="Sx") | ||
DN.s.sd.vec <- 0.05*DN.Sx | ||
|
||
## create matrix | ||
DN.popmat <- matrix(data = 0, nrow=DN.age.max+1, ncol=DN.age.max+1) | ||
diag(DN.popmat[2:(DN.age.max+1),]) <- DN.Sx[-(DN.age.max+1)] | ||
DN.popmat[DN.age.max+1,DN.age.max+1] <- DN.Sx[DN.age.max+1] | ||
DN.popmat[1,] <- DN.pred.p.mm | ||
colnames(DN.popmat) <- c(0:DN.age.max) | ||
rownames(DN.popmat) <- c(0:DN.age.max) | ||
DN.popmat.orig <- DN.popmat ## save original matrix | ||
|
||
## matrix properties | ||
max.lambda(DN.popmat.orig) ## 1-yr lambda | ||
DN.lm.pred | ||
max.r(DN.popmat.orig) # rate of population change, 1-yr | ||
DN.ssd <- stable.stage.dist(DN.popmat.orig) ## stable stage distribution | ||
plot(DN.age.vec, DN.ssd, type="l", pch=19, xlab="age (yrs)", ylab="ssd") | ||
R.val(DN.popmat.orig, DN.age.max) # reproductive value | ||
DN.gen.l <- G.val(DN.popmat.orig, DN.age.max) # mean generation length | ||
|
||
## initial population vector | ||
area <- 500*500 # km × km | ||
DN.pop.found <- round(area*DN.D.pred, 0) # founding population size (estimated density * 100 × 100 km region [10,000 km2]) | ||
DN.init.vec <- DN.ssd * DN.pop.found | ||
|
||
################# | ||
## project | ||
## set time limit for projection in 1-yr increments | ||
yr.st <- 1 | ||
#************************ | ||
yr.end <- round(40*DN.gen.l, 0) # set projection end date | ||
#************************ | ||
t <- (yr.end - yr.st) | ||
|
||
DN.tot.F <- sum(DN.popmat.orig[1,]) | ||
DN.popmat <- DN.popmat.orig | ||
yr.vec <- seq(yr.st,yr.end) | ||
|
||
## set population storage matrices | ||
DN.n.mat <- matrix(0, nrow=DN.age.max+1,ncol=(t+1)) | ||
DN.n.mat[,1] <- DN.init.vec | ||
|
||
## set up projection loop | ||
for (i in 1:t) { | ||
DN.n.mat[,i+1] <- DN.popmat %*% DN.n.mat[,i] | ||
} | ||
|
||
DN.n.pred <- colSums(DN.n.mat) | ||
yrs <- seq(yr.st, yr.end, 1) | ||
plot(yrs, log10(DN.n.pred),type="l",lty=2,pch=19,xlab="year",ylab="log10 N") | ||
|
||
# compensatory density feedback | ||
DN.K.max <- 1*DN.pop.found | ||
DN.K.vec <- c(1, DN.K.max/2, 0.75*DN.K.max, DN.K.max) | ||
DN.red.vec <- c(1,0.97,0.932,0.885) | ||
plot(DN.K.vec, DN.red.vec,pch=19,type="b") | ||
DN.Kred.dat <- data.frame(DN.K.vec, DN.red.vec) | ||
|
||
# logistic power function a/(1+(x/b)^c) | ||
DN.param.init <- c(1, 2*DN.K.max, 2) | ||
DN.fit.lp <- nls(DN.red.vec ~ a/(1+(DN.K.vec/b)^c), | ||
data = DN.Kred.dat, | ||
algorithm = "port", | ||
start = c(a = DN.param.init[1], b = DN.param.init[2], c = DN.param.init[3]), | ||
trace = TRUE, | ||
nls.control(maxiter = 1000, tol = 1e-05, minFactor = 1/1024)) | ||
DN.fit.lp.summ <- summary(DN.fit.lp) | ||
plot(DN.K.vec, DN.red.vec, pch=19,xlab="N",ylab="reduction factor") | ||
DN.K.vec.cont <- seq(1,2*DN.pop.found,1) | ||
DN.pred.lp.fx <- coef(DN.fit.lp)[1]/(1+(DN.K.vec.cont/coef(DN.fit.lp)[2])^coef(DN.fit.lp)[3]) | ||
lines(DN.K.vec.cont, DN.pred.lp.fx, lty=3,lwd=3,col="red") | ||
|
||
DN.a.lp <- coef(DN.fit.lp)[1] | ||
DN.b.lp <- coef(DN.fit.lp)[2] | ||
DN.c.lp <- coef(DN.fit.lp)[3] | ||
|
||
## compensatory density-feedback deterministic model | ||
## set population storage matrices | ||
DN.n.mat <- matrix(0, nrow=DN.age.max+1, ncol=(t+1)) | ||
DN.n.mat[,1] <- DN.init.vec | ||
DN.popmat <- DN.popmat.orig | ||
|
||
## set up projection loop | ||
for (i in 1:t) { | ||
DN.totN.i <- sum(DN.n.mat[,i]) | ||
DN.pred.red <- as.numeric(DN.a.lp/(1+(DN.totN.i/DN.b.lp)^DN.c.lp)) | ||
diag(DN.popmat[2:(DN.age.max+1),]) <- (DN.Sx[-(DN.age.max+1)])*DN.pred.red | ||
DN.popmat[DN.age.max+1,DN.age.max+1] <- (DN.Sx[DN.age.max+1])*DN.pred.red | ||
DN.popmat[1,] <- DN.pred.p.mm | ||
DN.n.mat[,i+1] <- DN.popmat %*% DN.n.mat[,i] | ||
} | ||
|
||
DN.n.pred <- colSums(DN.n.mat) | ||
plot(yrs, DN.n.pred, type="l",lty=2,pch=19,xlab="year",ylab="N") | ||
abline(h=DN.pop.found, lty=2, col="red", lwd=2) | ||
|
||
## stochatic projection with density feedback | ||
## set storage matrices & vectors | ||
iter <- 100 | ||
itdiv <- iter/10 | ||
|
||
DN.n.sums.mat <- matrix(data=NA, nrow=iter, ncol=(t+1)) | ||
DN.s.arr <- DN.m.arr <- array(data=NA, dim=c(t+1, DN.age.max+1, iter)) | ||
|
||
for (e in 1:iter) { | ||
DN.popmat <- DN.popmat.orig | ||
|
||
DN.n.mat <- matrix(0, nrow=DN.age.max+1,ncol=(t+1)) | ||
DN.n.mat[,1] <- DN.init.vec | ||
|
||
for (i in 1:t) { | ||
# stochastic survival values | ||
DN.s.alpha <- estBetaParams(DN.Sx, DN.s.sd.vec^2)$alpha | ||
DN.s.beta <- estBetaParams(DN.Sx, DN.s.sd.vec^2)$beta | ||
DN.s.stoch <- rbeta(length(DN.s.alpha), DN.s.alpha, DN.s.beta) | ||
|
||
# stochastic fertilty sampler (gaussian) | ||
DN.fert.stch <- rnorm(length(DN.popmat[,1]), DN.pred.p.mm, DN.m.sd.vec) | ||
DN.m.arr[i,,e] <- ifelse(DN.fert.stch < 0, 0, DN.fert.stch) | ||
|
||
DN.totN.i <- sum(DN.n.mat[,i], na.rm=T) | ||
DN.pred.red <- DN.a.lp/(1+(DN.totN.i/DN.b.lp)^DN.c.lp) | ||
|
||
diag(DN.popmat[2:(DN.age.max+1),]) <- (DN.s.stoch[-(DN.age.max+1)])*DN.pred.red | ||
DN.popmat[DN.age.max+1,DN.age.max+1] <- (DN.s.stoch[DN.age.max+1])*DN.pred.red | ||
DN.popmat[1,] <- DN.m.arr[i,,e] | ||
DN.n.mat[,i+1] <- DN.popmat %*% DN.n.mat[,i] | ||
|
||
DN.s.arr[i,,e] <- DN.s.stoch * DN.pred.red | ||
|
||
} # end i loop | ||
|
||
DN.n.sums.mat[e,] <- ((as.vector(colSums(DN.n.mat))/DN.pop.found)) | ||
|
||
if (e %% itdiv==0) print(e) | ||
|
||
} # end e loop | ||
|
||
DN.n.md <- apply(DN.n.sums.mat, MARGIN=2, median, na.rm=T) # mean over all iterations | ||
DN.n.up <- apply(DN.n.sums.mat, MARGIN=2, quantile, probs=0.975, na.rm=T) # upper over all iterations | ||
DN.n.lo <- apply(DN.n.sums.mat, MARGIN=2, quantile, probs=0.025, na.rm=T) # lower over all iterations | ||
|
||
par(mfrow=c(1,3)) | ||
plot(yrs,DN.n.md,type="l", main = "", xlab="year", ylab="pN1", lwd=2, ylim=c(0.95*min(DN.n.lo),1.05*max(DN.n.up))) | ||
lines(yrs,DN.n.lo,lty=2,col="red",lwd=1.5) | ||
lines(yrs,DN.n.up,lty=2,col="red",lwd=1.5) | ||
|
||
DN.s.add <- DN.m.add <- rep(0, DN.age.max+1) | ||
for (m in 1:iter) { | ||
DN.s.add <- rbind(DN.s.add, DN.s.arr[ceiling(DN.gen.l):(t+1),,m]) | ||
DN.m.add <- rbind(DN.m.add, DN.m.arr[ceiling(DN.gen.l):(t+1),,m]) | ||
} | ||
DN.s.add <- DN.s.add[-1,] | ||
DN.m.add <- DN.m.add[-1,] | ||
|
||
DN.s.md <- apply(DN.s.add, MARGIN=2, median, na.rm=T) # mean s over all iterations | ||
DN.s.up <- apply(DN.s.add, MARGIN=2, quantile, probs=0.975, na.rm=T) # upper over all iterations | ||
DN.s.lo <- apply(DN.s.add, MARGIN=2, quantile, probs=0.025, na.rm=T) # lower over all iterations | ||
|
||
plot(DN.age.vec,DN.s.md,type="l", main = "", xlab="age", ylab="s", lwd=2, ylim=c(0.95*min(DN.s.lo),1.05*max(DN.s.up))) | ||
lines(DN.age.vec,DN.s.lo,lty=2,col="red",lwd=1.5) | ||
lines(DN.age.vec,DN.s.up,lty=2,col="red",lwd=1.5) | ||
|
||
DN.m.md <- apply(DN.m.add, MARGIN=2, median, na.rm=T) # mean s over all iterations | ||
DN.m.up <- apply(DN.m.add, MARGIN=2, quantile, probs=0.975, na.rm=T) # upper over all iterations | ||
DN.m.lo <- apply(DN.m.add, MARGIN=2, quantile, probs=0.025, na.rm=T) # lower over all iterations | ||
|
||
plot(DN.age.vec,DN.m.md,type="l", main = "", xlab="age", ylab="m", lwd=2, ylim=c(0.95*min(DN.m.lo),1.05*max(DN.m.up))) | ||
lines(DN.age.vec,DN.m.lo,lty=2,col="red",lwd=1.5) | ||
lines(DN.age.vec,DN.m.up,lty=2,col="red",lwd=1.5) | ||
par(mfrow=c(1,1)) |