Implementation of "Abnormality Detection in Chest X-ray Images Using Uncertainty Prediction Autoencoders" in MICCAI 2020. [paper]
RSNA Pneumonia Detection Challenge Dataset: https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data
Pediatric Dataset: https://data.mendeley.com/datasets/rscbjbr9sj/3
- python, pytorch, numpy, scikit-learn, tensorboard-pytorch
Before running the scripts, you should edit DATA_PATH
in xray_data.py
in order to read the data correctly:
DATA_PATH = '$WHERE_YOU_STORE_DATASETS'
To train a traditional autoencoder:
python uae_main.py
To train an autoencoder with uncertainty:
python uae_main.py --u
To evaluate a model:
python uae_main.py --eval --u(optional)
@inproceedings{mao2020abnormality,
title={Abnormality Detection in Chest X-Ray Images Using Uncertainty Prediction Autoencoders},
author={Mao, Yifan and Xue, Fei-Fei and Wang, Ruixuan and Zhang, Jianguo and Zheng, Wei-Shi and Liu, Hongmei},
booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
pages={529--538},
year={2020},
organization={Springer}
}