Skip to content

dberga/nerfstudio

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Nerfstudio XR Tools

Example Video Frames

Installation

Check INSTALL.md for installing all drivers and dependencies in relation to this repo.

Usage (Scripts)

Preprocessing scenes of videos and images

Use process_data.sh to use ns-process, specifying the GPU, TYPE (whether 'images' or 'video'), DATASET (scene folder) and SFM (either colmap or hloc) for example:

sh process_data.sh 0 images data/nerfstudio/kitchen colmap

Alternatively, you can extract the frames from the video using ffmpeg, for example at a framerate of 1 fps:

ffmpeg -i video.mp4 -vf "fps=1" frame%04d.png

For processing an entire dataset (folder of scenes), use all_process.sh specifying the GPU, FOLDER (folder with scenes) and whether to OVERWRITE your processed files:

sh all_process.sh 0 data/nerfstudio

The script whole_process.sh will read all folders in data/, so that if you want to run all examples that exist in your data folder, then:

sh whole_process.sh 0

Note: For testing SFM precision (% matching images) run count_sfm.py, as an example:

python count_sfm.py --dataset nerfstudio --scene kitchen

Training Nerfs from images and videos

Use train.sh to use ns-train, specifying the GPU, MODEL and DATASET (scene folder), for example:

sh train.sh 0 nerfacto data/nerfstudio/kitchen

For training an entire dataset (folder of scenes), use all_train.sh specifying the GPU, MODEL, FOLDER (folder with scenes) and whether to OVERWRITE your outputs:

sh all_train.sh 0 nerfacto data/nerfstudio true

The script whole_train.sh will read all folders in data/, so that if you want to run all examples that exist in your data folder, then:

sh whole_train.sh 0 nerfacto

Instead, if you want to train all scenes from specific dataset with all models, use the train_dataset.sh script specifying the GPU and DATASET:

sh train_dataset.sh 0 data/nerfstudio

List of current implemented 3D reconstruction methods in Nerfstudio:

vanilla-nerf
vanilla-nerf-blender
mipnerf
nerfacto
nerfacto-big
nerfacto-huge
depth-nerfacto
instant-ngp
instant-ngp-bounded
dnerf
neus
neus-facto
tensorf
volinga
kplanes
kplanes-dynamic
tetra-nerf
tetra-nerf-original
phototourism
splatfacto
pynerf
pynerf-synthetic
pynerf-occupancy-grid
nerfbusters

Other useful methods (image generation, editing, region proposals, segmentation, video nerfs, etc.)

generfacto
in2n
in2n-small
in2n-tiny
igs2gs
lerf
lerf-big
lerf-lite
semantic-nerfw
nerfplayer-nerfacto
nerfplayer-ngp

Here is the table of models characteristics:

Model Name Field Encodings Samplers Renderers Losses Default Num Rays Metrics Dict
vanilla_nerf NeRFField(coarse+fine) NeRFEncoding(position+direction) UniformSampler, PDFSampler RGBRenderer, AccumulationRenderer, DepthRenderer MSELoss num_coarse_samples: 64, num_importance_samples: 128 PSNR, Coarse PSNR, Fine PSNR, Fine SSIM, Fine LPIPS
mipnerf NeRFField (with integrated encoding) NeRFEncoding(position+direction) UniformSampler, PDFSampler RGBRenderer, AccumulationRenderer, DepthRenderer MSELoss Inherits from VanillaModelConfig PSNR, Coarse PSNR, Fine PSNR, Fine SSIM, Fine LPIPS
nerfacto NerfactoField (HashMLPDensityField) NeRFEncoding(position+direction) ProposalNetworkSampler (HashMLPDensityField) RGBRenderer, AccumulationRenderer, DepthRenderer, NormalsRenderer MSELoss, Interlevel Loss, Distortion Loss, Orientation Loss, Predicted Normal Loss num_nerf_samples_per_ray: 48, num_proposal_samples_per_ray: (256, 96) PSNR, SSIM, LPIPS
Instant NGP NerfactoField (SceneContraction disabled) NeRFEncoding(position+direction, spatial_distortion_enabled) VolumetricSampler RGBRenderer, AccumulationRenderer, DepthRenderer MSELoss Auto-determined based on scene bounds PSNR, SSIM, LPIPS
TensorRF TensoRFField (TensorVMEncoding, init_resolution: 128) TensorVMEncoding, TriplaneEncoding, TensorCPEncoding UniformSampler, PDFSampler RGBRenderer, AccumulationRenderer, DepthRenderer MSELoss, TV Loss, L1 Regularization num_uniform_samples: 200, num_samples: 50 PSNR, SSIM, LPIPS
NeuS SurfaceModel (NeuSSampler) NeRFEncoding (Not applicable as NeuS focuses on SDF) NeuSSampler RGBRenderer, AccumulationRenderer, DepthRenderer MSELoss (with focus on surface reconstruction) num_samples: 64, num_samples_importance: 64 PSNR, SSIM, LPIPS, Surface Reconstruction Metrics
NeuSFacto NeuSField (ProposalNetworkSampler, HashMLPDensityField) NeRFEncoding (SDF based) ProposalNetworkSampler RGBRenderer, AccumulationRenderer, DepthRenderer MSELoss, Interlevel Loss num_neus_samples_per_ray: 48, num_proposal_samples_per_ray: (256, 96) PSNR, SSIM, LPIPS
SplatFacto Gaussian Splatting Custom Gaussian Parameters Custom Gaussian Sampler Custom Splatting Renderer Custom Losses (SSIM, Scale Regularization) Custom based on Gaussian parameters PSNR, SSIM, LPIPS
DepthNerfacto NerfactoField augmented with depth Inherits from Nerfacto Inherits from Nerfacto Inherits from Nerfacto Inherits from Nerfacto + Depth Loss Inherits from Nerfacto Inherits from Nerfacto + Depth MSE
SemanticNerfW NerfactoField augmented with semantics NeRFEncoding(position+direction, spatial_distortion_enabled) ProposalNetworkSampler RGBRenderer, AccumulationRenderer, DepthRenderer, SemanticRenderer MSELoss, Semantic Cross-Entropy Loss num_nerf_samples_per_ray: 48, num_proposal_samples_per_ray: (256, 96) PSNR, SSIM, LPIPS
Generfacto GenerfactoField (HashMLPDensityField) PositionalTextEmbeddings (location-based prompting) ProposalNetworkSampler RGBRenderer, AccumulationRenderer, DepthRenderer, NormalsRenderer MSELoss, SDS Loss, Distortion Loss, Interlevel Loss, Orientation Loss, Opacity Loss num_nerf_samples_per_ray: 48, num_proposal_samples_per_ray: (256, 96) Custom Metrics

The default parameters are the following:

Method Name Losses Proposal Optimizer Proposal LR Fields Optimizer Fields LR Camera_opt Optimizer Camera_opt LR Scheduler Model and Input Datamanager and Input Steps Max Num Iterations
vanilla-nerf MSELoss RAdam 5e-4 RAdam 5e-4 ExponentialDecaySchedulerConfig(lr_final=0.0001, max_steps=100000) VanillaModel () VanillaDataManager() 500 100000
mipnerf MSELoss RAdam 5e-4 None VanillaModel (num_coarse_samples=128, num_importance_samples=128, eval_rays_per_chunk=1024) VanillaDataManager(train_raysXbatch=1024) 500 100000
nerfacto MSELoss, distortion_loss, interlevel_loss,orientation_loss, pred_normal_loss Adam 1e-2 Adam 1e-2 Adam 1e-3 ExponentialDecaySchedulerConfig(lr_final=0.0001, max_steps=30000) NerfactoModel (eval_rays_per_chunk=32768) VanillaDataManager(train_raysXbatch=4096, eval_raysXbatch=4096) 500 30000
instant-ngp MSELoss Adam 1e-2 ExponentialDecaySchedulerConfig(lr_final=0.0001, max_steps=100000) InstantNGP (eval_num_rays_per_chunk=8192) VanillaDataManager(train_raysXbatch=4096, eval_raysXbatch=4096) 500 100000
tensorf MSELoss, total_variation_loss Adam 0.001 Adam 0.0001 ExponentialDecaySchedulerConfig(lr_final=0.0001, max_steps=100000) TensorF (regularization="tv") VanillaDataManager(train_raysXbatch=4096, eval_raysXbatch=4096) 500 100000
semantic-nerfw MSELoss Adam 1e-2 Adam 1e-2 None SemanticNerfWModel (eval_rays_per_chunk=65536) VanillaDataManager(train_raysXbatch=4096, eval_raysXbatch=8192) 500 100000
dnerf MSELoss RAdam 5e-4 RAdam 5e-4 None VanillaModel (enable_temporal_distortion=True, temporal_distortion_params={"kind": TemporalDistortionKind.DNERF}) VanillaDataManager() 500 100000
phototourism MSELoss Adam 1e-2 Adam 1e-2 Adam 1e-3 ExponentialDecaySchedulerConfig(lr_final=1e-4, max_steps=100000) NerfactoModel (eval_rays_per_chunk=32768) VanillaDataManager(train_raysXbatch=4096, eval_raysXbatch=4096) 500 100000
generfacto MSELoss Adam 1e-3 Adam 5e-4 None GenerfactoModel (eval_rays_per_chunk=32768, distortion_loss_mult=1.0, interlevel_loss_mult=100.0, max_res=256, sphere_collider=True, initialize_density=True, taper_range=(0, 2000), random_background=True, proposal_warmup=2000, proposal_update_every=0, proposal_weights_anneal_max_num_iters=2000, start_lambertian_training=500, start_normals_training=2000, opacity_loss_mult=0.001, positional_prompting="discrete", guidance_scale=25) RandomCamerasDataManager(horizontal_rotation_warmup=3000) 500 100000
neus MSELoss Adam 5e-4 None NeuSModel (eval_rays_per_chunk=1024) VanillaDataManager(train_raysXbatch=1024, eval_raysXbatch=1024) 500 100000
neus-facto MSELoss Adam 1e-2 Adam 5e-4 Adam 5e-4 MultiStepSchedulerConfig(max_steps=20001, milestones=(10000, 1500, 18000)) NeuSFactoModel (eval_rays_per_chunk=2048, sdf_field=SDFFieldConfig(num_layers=2, num_layers_color=2, hidden_dim=256, bias=0.5, beta_init=0.8, use_appearance_embedding=False), background_model="none") VanillaDataManager(train_raysXbatch=2048, eval_raysXbatch=2048) 500 100000
splatfacto MSELoss Adam 0.00016 Adam 0.0025 Adam 0.001 ExponentialDecaySchedulerConfig(lr_final=0.0001, max_steps=100000) SplatfactoModel () FullImageDatamanager(load_3D_points=True, cache_images_type="uint8") 500 100000

Rendering scenes as videos and gifs

Use render.sh to use ns-render, specifying the GPU, MODEL, DATASET (scene folder), RESOL for resolution scaling (default 1) and OVERWRITE:

sh render.sh 0 nerfacto data/nerfstudio/kitchen 1 false

For rendering all output files, use all_render.sh specifying the GPU, RESOL and whether to OVERWRITE your outputs:

sh all_render.sh 0 1 false

Evaluating and Benchmarking models

Use eval.sh to use ns-eval, specifying the GPU, MODEL, DATASET (scene folder):

sh eval.sh 0 nerfacto data/nerfstudio/kitchen

For rendering all output files, use all_eval.sh specifying the GPU and whether to OVERWRITE your outputs:

sh all_eval.sh 0 true

The outputs will appear as .json in your outputs/ folder. To stack all the results in one csv you'd need to run all_benchmark.sh to convert and stack the results in one unique .csv, which will be saved in your benchmarks/ folder; specifying the GPU and the outputs/ folder (already set by default).

sh all_benchmark.sh 0 outputs

Exporting Nerf's 3D scenes to Point Clouds and Meshes

Use export.sh to use ns-export, specifying the GPU, MODEL, DATASET (scene folder) and SCALE:

sh export.sh 0 nerfacto data/nerfstudio/kitchen 1

For exporting all output files, use all_export.sh specifying the GPU, SCALE and whether to OVERWRITE your outputs:

sh all_export.sh 0 1 true

Comparing 3D data

You can also compare Point Cloud Distances between algorithms using open3d:

python compare.py --scene kitchen --type pcd

(note: you can add the flag --visualize True to view a color-coded [red-green] comparison)

To compare with all the exported examples, use:

sh all_compare.sh 0 exports pcd

Demo Showcase - From data to gifs showcase

To view all data examples as gifs, use whole_showcase.sh specifying the GPU and whether to OVERWRITE your outputs:

sh whole_showcase.sh 0 true

For specific dataset cases, use all_showcase.sh specifying the GPU, DATASET (scene folder) and whether to OVERWRITE your outputs:

sh all_showcase.sh 0 data/nerfstudio/kitchen true

You can also visualize examples using open3d:

python visualize.py --scene kitchen --type mesh

Example Benchmarks

Check BENCHMARK-AI4H1.md for a short benchmark set of Cultural Heritage examples.

Other applications

Region proposals with LERF

Installation:

python -m pip install git+https://github.com/kerrj/lerf

To use LERF we simply need to run our training train.sh script selecting the lerf model, such as:

sh train.sh 0 lerf data/nerfstudio/kitchen

Then run the viewer separately, prompting the segmentation category target manually inside the new viewer's lerf textbox.

"chair" "guitar" "walls"
"piano" "computer" "window"

Video Editing (changing 3D style/texture and elements with text)

Instruct-Nerf2Nerf using nerfacto

in2n

Installation:

python -m pip install git+https://github.com/ayaanzhaque/instruct-nerf2nerf

To use this we built a script instruct.sh in which you can run ns-train in2n with specific GPU, MODEL, DATASET (scene folder), PROMPT (the edit target prompt you can enter), GSCALE and ISCALE, for example:

sh instruct.sh 0 nerfacto data/nerfstudio/kitchen "convert the piano to drums" 7.5 1.5 in2n

Instruct-GS2GS using Gaussian Splatting

Installation:

python -m pip install git+https://github.com/cvachha/instruct-gs2gs

To use this we built a script instruct.sh in which you can run ns-train igs2gs with specific GPU, MODEL, DATASET (scene folder), PROMPT (the edit target prompt you can enter), GSCALE and ISCALE, for example:

sh instruct.sh 0 splatfacto data/nerfstudio/kitchen "convert the piano to drums" 12.5 1.5 igs2gs

Playing 3D Videos in Nerfplayer

NerfPlayer

Installation:

python -m pip install git+https://github.com/lsongx/nerfplayer-nerfstudio.git

Usage (use either nerfplayer-ngp or nerfplayer-nerfacto):

sh train.sh 0 nerfplayer-ngp data/dycheck/mochi-high-five

Semantic Segmentation with Semantic Nerf

Semantic Nerf

Usage:

sh train.sh 0 semantic-nerfw data/sitcoms3d/Friends-monica_apartment

Check Nerfstudio's Semantic-Nerfw Source Code here

3D model generation with Generfacto

"a high quality photo of a pineapple"

Install dependencies (huggingface-hub and diffusers will be authomatically installed from the requirements.txt file)

python -m pip install -e .[gen]

Create a token for HuggingFace here, then login in terminal before running Generfacto. Note: For DeepFloyd you need to accept the Licence agreement here using the account from your access token.

huggingface-cli login

Example Generfacto run:

ns-train generfacto --prompt "a high quality photo of a pineapple" --pipeline.model.diffusion_model "stablediffusion"

The first time you run this method, the diffusion model weights will be downloaded and cached from Hugging Face, which may take a couple minutes. Specify which diffusion model to use with the diffusion, either "stablediffusion" or "deepfloyd".

Other 3D generation tools (SSDNerf, Text2Nerf, GET3D and Magic3D)

SSDNerf Text2Nerf NVidia GET3D Nvidia Magic3D

About

A collaboration friendly studio for NeRFs

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 90.2%
  • JavaScript 6.6%
  • Shell 1.7%
  • TypeScript 0.8%
  • SCSS 0.3%
  • Dockerfile 0.3%
  • HTML 0.1%