-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added script for generation benchmark single question embeddings and KNN
- Loading branch information
Showing
1 changed file
with
75 additions
and
0 deletions.
There are no files selected for viewing
75 changes: 75 additions & 0 deletions
75
general_working_directory/benchmark_emb_and_knn_generator.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,75 @@ | ||
import numpy as np | ||
from openai import OpenAI | ||
from sklearn.neighbors import NearestNeighbors | ||
import json | ||
import math | ||
import re | ||
import random | ||
import csv | ||
|
||
with open('benchmark_dataset.json') as json_file: | ||
benchmark_data = json.load(json_file) | ||
|
||
client = OpenAI(base_url="http://tentris-ml.cs.upb.de:8502/v1", api_key="token-tentris-upb") | ||
|
||
|
||
def embed(txt): | ||
em = client.embeddings.create(input=[txt], model="tentris").data[0].embedding | ||
assert type(em) is list, f"{type(em)} is not a list" | ||
return em | ||
|
||
|
||
def get_random_question(questions): | ||
q = questions.strip() | ||
if q.startswith("*"): | ||
splits = q.split("*") | ||
del splits[0] # del empty string | ||
elif q.startswith("1."): | ||
splits = re.split(r'\d+\.\s*', q) | ||
del splits[0] # del empty string | ||
else: | ||
splits = q.split("?") | ||
random_i = random.randint(0, len(splits) - 1) | ||
q = splits[random_i] | ||
# if splits are done in "?" basis, remove possible trailing "*" and add a "?" in the end. | ||
if "*" in q: | ||
q.replace("*", "") | ||
q = q.strip() | ||
if "?" not in q: | ||
q = q + "?" | ||
|
||
return q | ||
|
||
|
||
iris = list(benchmark_data.keys()) | ||
single_questions = list([get_random_question(qs) for qs in benchmark_data.values()]) | ||
|
||
X = np.array([embed(q) for q in single_questions]) | ||
N = (len(benchmark_data)) # N = 45618 | ||
D = 4096 | ||
K = int(math.sqrt(N)) # k ≈ 213 | ||
assert X.shape == (N, D) | ||
assert K == 213 | ||
|
||
with open('benchmark_embeddings.csv', mode='a', newline='') as file: | ||
print("Saving embeddings...") | ||
writer = csv.writer(file) | ||
writer.writerow(["IRI"] + [f"{i}" for i in range(D)]) | ||
for idx, emb in enumerate(X): | ||
iri = iris[idx] | ||
writer.writerow([iri] + list(emb)) | ||
print("Done saving embeddings!") | ||
|
||
knn = NearestNeighbors(n_neighbors=K) | ||
knn.fit(X) | ||
|
||
labels = knn.kneighbors(X, return_distance=False) | ||
|
||
with open('benchmark_knn.csv', mode='a', newline='') as file: | ||
print("Saving KNN...") | ||
writer = csv.writer(file) | ||
writer.writerow(["IRI"] + [f"{i}" for i in range(K)]) | ||
for idx, label in enumerate(labels): | ||
iri = iris[idx] | ||
writer.writerow([iri] + list(label)) | ||
print("Done saving KNN!") |