-
Notifications
You must be signed in to change notification settings - Fork 549
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
63b4feb
commit 7cdaeac
Showing
3 changed files
with
102 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
import pytest | ||
|
||
from outlines.models.mlxlm import mlxlm | ||
from outlines.models.transformers import TransformerTokenizer | ||
|
||
try: | ||
import mlx.core as mx | ||
|
||
HAS_MLX = mx.metal.is_available() | ||
except ImportError: | ||
HAS_MLX = False | ||
|
||
|
||
TEST_MODEL = "mlx-community/SmolLM-135M-Instruct-4bit" | ||
|
||
|
||
@pytest.mark.skipif(not HAS_MLX, reason="MLX tests require Apple Silicon") | ||
def test_mlxlm_model(): | ||
model = mlxlm(TEST_MODEL) | ||
assert hasattr(model, "model") | ||
assert hasattr(model, "tokenizer") | ||
assert isinstance(model.tokenizer, TransformerTokenizer) | ||
|
||
|
||
@pytest.mark.skipif(not HAS_MLX, reason="MLX tests require Apple Silicon") | ||
def test_mlxlm_tokenizer(): | ||
model = mlxlm(TEST_MODEL) | ||
|
||
# Test single string encoding/decoding | ||
test_text = "Hello, world!" | ||
token_ids = mx.array(model.mlx_tokenizer.encode(test_text)) | ||
assert isinstance(token_ids, mx.array) | ||
|
||
|
||
@pytest.mark.skipif(not HAS_MLX, reason="MLX tests require Apple Silicon") | ||
def test_mlxlm_generate(): | ||
from outlines.generate.api import GenerationParameters, SamplingParameters | ||
|
||
model = mlxlm(TEST_MODEL) | ||
prompt = "Write a haiku about programming:" | ||
|
||
# Test with basic generation parameters | ||
gen_params = GenerationParameters(max_tokens=50, stop_at=None, seed=None) | ||
|
||
# Test with different sampling parameters | ||
sampling_params = SamplingParameters( | ||
sampler="multinomial", num_samples=1, top_p=0.9, top_k=None, temperature=0.7 | ||
) | ||
|
||
# Test generation | ||
output = model.generate(prompt, gen_params, None, sampling_params) | ||
assert isinstance(output, str) | ||
assert len(output) > 0 | ||
|
||
|
||
@pytest.mark.skipif(not HAS_MLX, reason="MLX tests require Apple Silicon") | ||
def test_mlxlm_stream(): | ||
from outlines.generate.api import GenerationParameters, SamplingParameters | ||
|
||
model = mlxlm(TEST_MODEL) | ||
prompt = "Count from 1 to 5:" | ||
|
||
gen_params = GenerationParameters(max_tokens=20, stop_at=None, seed=None) | ||
|
||
sampling_params = SamplingParameters( | ||
sampler="greedy", # Use greedy sampling for deterministic output | ||
num_samples=1, | ||
top_p=None, | ||
top_k=None, | ||
temperature=0.0, | ||
) | ||
|
||
# Test streaming | ||
stream = model.stream(prompt, gen_params, None, sampling_params) | ||
tokens = list(stream) | ||
assert len(tokens) > 0 | ||
assert all(isinstance(token, str) for token in tokens) | ||
|
||
# Test that concatenated streaming output matches generate output | ||
streamed_text = "".join(tokens) | ||
generated_text = model.generate(prompt, gen_params, None, sampling_params) | ||
assert streamed_text == generated_text | ||
|
||
|
||
@pytest.mark.skipif(not HAS_MLX, reason="MLX tests require Apple Silicon") | ||
def test_mlxlm_errors(): | ||
model = mlxlm(TEST_MODEL) | ||
|
||
# Test batch inference (should raise NotImplementedError) | ||
with pytest.raises(NotImplementedError): | ||
from outlines.generate.api import GenerationParameters, SamplingParameters | ||
|
||
gen_params = GenerationParameters(max_tokens=10, stop_at=None, seed=None) | ||
sampling_params = SamplingParameters("multinomial", 1, None, None, 1.0) | ||
model.generate(["prompt1", "prompt2"], gen_params, None, sampling_params) | ||
|
||
# Test beam search (should raise NotImplementedError) | ||
with pytest.raises(NotImplementedError): | ||
sampling_params = SamplingParameters("beam_search", 1, None, None, 1.0) | ||
model.generate("test prompt", gen_params, None, sampling_params) |