-
Notifications
You must be signed in to change notification settings - Fork 91
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
249 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
170 changes: 170 additions & 0 deletions
170
src/fairseq2/nn/transformer/relative_position_attention.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,170 @@ | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# All rights reserved. | ||
# | ||
# This source code is licensed under the BSD-style license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
|
||
from typing import Optional, Tuple, final | ||
|
||
import torch | ||
import torch.nn as nn | ||
from torch import Tensor | ||
from torch.nn import Embedding | ||
from torch.nn.functional import dropout, softmax | ||
|
||
from fairseq2.nn.transformer.attention import SDPA | ||
from fairseq2.typing import DataType, Device, finaloverride | ||
|
||
|
||
@final | ||
class ShawRelativePositionSDPA(SDPA): | ||
"""Computes relative position scaled dot-product attention | ||
as described in :cite:t:`https://arxiv.org/pdf/1803.02155v2.pdf`.""" | ||
|
||
model_dim: int | ||
num_heads: int | ||
max_left_rel_position: int | ||
max_right_rel_position: Optional[int] | ||
rel_k_embedding: Embedding | ||
rel_v_embedding: Optional[Embedding] | ||
device: Optional[Device] | ||
|
||
def __init__( | ||
self, | ||
model_dim: int, | ||
num_heads: int, | ||
max_left_rel_position: int, | ||
*, | ||
max_right_rel_position: Optional[int] = None, | ||
use_rel_position_values: bool = False, | ||
attn_dropout_p: float = 0.0, | ||
device: Optional[Device] = None, | ||
dtype: Optional[DataType] = None, | ||
) -> None: | ||
""" | ||
:param model_dim: | ||
The dimensionality of the model. | ||
:param: num_heads: | ||
The number of attention heads. | ||
:param: max_left_rel_position: | ||
The left clipping value for relative positions. | ||
:param: max_right_rel_position: | ||
The right clipping value for relative positions. | ||
:param: use_rel_position_values: | ||
Whether to use relative position values to compute relative attention. | ||
:param attn_dropout_p: | ||
The dropout probability on attention weights. | ||
""" | ||
super().__init__(attn_dropout_p=attn_dropout_p) | ||
|
||
if model_dim % num_heads != 0: | ||
raise ValueError( | ||
f"`model_dim` must be a multiple of `num_heads` ({num_heads}), but is {model_dim} instead." | ||
) | ||
|
||
self.model_dim = model_dim | ||
self.num_heads = num_heads | ||
|
||
head_dim = model_dim // num_heads | ||
|
||
self.max_left_rel_position = max_left_rel_position | ||
self.max_right_rel_position = ( | ||
max_right_rel_position | ||
if max_right_rel_position is not None | ||
else max_left_rel_position | ||
) | ||
num_positions = self.max_left_rel_position + 1 + self.max_right_rel_position | ||
|
||
self.rel_k_embedding = Embedding( | ||
num_positions, head_dim, device=device, dtype=dtype | ||
) | ||
|
||
if use_rel_position_values: | ||
self.rel_v_embedding = Embedding( | ||
num_positions, head_dim, device=device, dtype=dtype | ||
) | ||
else: | ||
self.register_module("rel_v_embedding", None) | ||
|
||
self.reset_parameters() | ||
|
||
def reset_parameters(self) -> None: | ||
"""Reset the parameters and buffers of the module.""" | ||
nn.init.xavier_uniform_(self.rel_k_embedding.weight) | ||
if self.rel_v_embedding is not None: | ||
nn.init.xavier_uniform_(self.rel_v_embedding.weight) | ||
|
||
def rel_position_indices(self, seq_len: int) -> Tensor: | ||
positions = torch.arange(seq_len).unsqueeze(0) | ||
rel_dist = positions - positions.t() | ||
rel_dist = torch.clamp( | ||
rel_dist, -self.max_left_rel_position, self.max_right_rel_position | ||
) | ||
return rel_dist + self.max_left_rel_position | ||
|
||
@finaloverride | ||
def forward( | ||
self, | ||
queries: Tensor, | ||
keys: Tensor, | ||
values: Tensor, | ||
*, | ||
mask: Optional[Tensor] = None, | ||
needs_weights: bool = False, | ||
) -> Tuple[Tensor, Optional[Tensor]]: | ||
if queries.ndim != 4 or keys.ndim != 4 or values.ndim != 4: | ||
raise ValueError( | ||
"`ShawRelativePositionSDPA` can only be used as part of a multi-head attention layer and expects its input tensors to be 4 dimensional." | ||
) | ||
|
||
# (N, H, S, head_dim) @ (N, H, head_dim, S_kv) = (N, H, S, S_kv) | ||
attn_weights = torch.matmul(queries, keys.transpose(-1, -2)) | ||
|
||
query_length, kv_length = queries.shape[2], keys.shape[2] | ||
|
||
# (S_kv, S_kv) | ||
rel_position_indices = self.rel_position_indices(kv_length) | ||
|
||
rel_position_indices = rel_position_indices.to(device=queries.device) | ||
|
||
# (S, S_kv, head_dim) | ||
rel_position_keys = self.rel_k_embedding(rel_position_indices)[-query_length:] | ||
|
||
# (N, H, S, head_dim) @ (S, S_kv, head_dim) = (N, H, S, S_kv) | ||
rel_attn_weights = torch.einsum("nhsm,stm->nhst", queries, rel_position_keys) | ||
|
||
attn_weights += rel_attn_weights | ||
|
||
attn_weights = attn_weights * (queries.size(-1) ** -0.5) | ||
|
||
if mask is not None: | ||
attn_weights = attn_weights + mask | ||
|
||
attn_weights = softmax(attn_weights, dim=-1, dtype=torch.float32) | ||
|
||
attn_weights = attn_weights.type_as(queries) | ||
|
||
if self.training and self.attn_dropout_p > 0.0: | ||
attn_weights = dropout(attn_weights, self.attn_dropout_p) | ||
|
||
# (N, H, S, S_kv) @ (N, H, S_kv, head_dim) = (N, H, S, head_dim) | ||
attn = torch.matmul(attn_weights, values) | ||
|
||
if self.rel_v_embedding is not None: | ||
# (S, S_kv, head_dim) | ||
rel_position_values = self.rel_v_embedding(rel_position_indices)[ | ||
-query_length: | ||
] | ||
|
||
# (N, H, S, S_kv) @ (S, S_kv, head_dim) = (N, H, S, head_dim) | ||
rel_attn = torch.einsum("nhst,stm->nhsm", attn_weights, rel_position_values) | ||
|
||
attn += rel_attn | ||
|
||
return attn, attn_weights if needs_weights else None | ||
|
||
def extra_repr(self) -> str: | ||
""":meta private:""" | ||
s = super().extra_repr() | ||
|
||
return f"{s}, model_dim={self.model_dim}, num_heads={self.num_heads}" |