Skip to content

Commit

Permalink
[🔥] Support online tokenization
Browse files Browse the repository at this point in the history
  • Loading branch information
yzhangcs committed Jan 4, 2025
1 parent 8a68a0b commit 468c523
Showing 1 changed file with 147 additions and 1 deletion.
148 changes: 147 additions & 1 deletion training/flame/data.py
Original file line number Diff line number Diff line change
@@ -1,12 +1,156 @@
# -*- coding: utf-8 -*-

from __future__ import annotations

from copy import deepcopy
from dataclasses import dataclass
from typing import Any, Dict, List, Union
from typing import Any, Dict, Iterable, List, Union

import numpy as np
import torch
from datasets import Dataset, IterableDataset
from flame.logging import get_logger
from transformers import PreTrainedTokenizer

logger = get_logger(__name__)


class HuggingfaceDataset(IterableDataset):

def __init__(
self,
dataset: Dataset,
tokenizer: PreTrainedTokenizer,
context_len: int = 2048,
rank: int = 0,
world_size: int = 1,
buffer_size: int = 1024
) -> HuggingfaceDataset:

self.dataset = dataset
self.tokenizer = tokenizer

self.data = dataset.shard(world_size, rank)
self.context_len = context_len
self.rank = rank
self.world_size = world_size
self.buffer_size = buffer_size

if tokenizer.vocab_size < torch.iinfo(torch.int16).max:
self.dtype = torch.int16
elif tokenizer.vocab_size < torch.iinfo(torch.int32).max:
self.dtype = torch.int32
else:
self.dtype = torch.int64
self.states = None
self.buffer = torch.tensor([], dtype=self.dtype)
self.tokens = []
self.rand_id = 0
self.token_id = 0
self.rng_state = None
self._epoch = 0

def __iter__(self):
g = torch.Generator()
g.manual_seed(self._epoch + self.rank)
if self.rng_state is not None:
g.set_state(self.rng_state)

rand_it = self.randint(0, self.buffer_size, g=g)
if self.states is not None:
self.data.load_state_dict(self.states)

# max number of tokens allowed in the chunk buffer
n_tokens = self.buffer_size * self.context_len
for sample in self.tokenize(self.data):
# keep appending the samples to the token buffer
self.tokens += sample
# if the token buffer is full, start sampling
# NOTE: we first convert the token ids to a tensor of shape [n_chunks, context_len] for efficiency
if len(self.buffer) == 0 and len(self.tokens) >= n_tokens:
self.buffer = torch.tensor(self.tokens[:n_tokens], dtype=self.dtype).view(self.buffer_size, -1)
self.tokens = self.tokens[n_tokens:]
if len(self.buffer) == self.buffer_size:
yield from self.sample(rand_it)

n_chunks = len(self.tokens) // self.context_len
# handle the left tokens in the buffer
if n_chunks > 0:
n_tokens = n_chunks * self.context_len
indices = torch.randperm(n_chunks, generator=g).tolist()
self.buffer = torch.tensor(self.tokens[:n_tokens], dtype=torch.long).view(n_chunks, -1)
self.tokens = self.tokens[n_tokens:]
for i in indices:
yield {'input_ids': self.buffer[i]}

def tokenize(self, data, batch_size: int = 64):
texts, states = [], []
for sample in data:
texts.append(sample['text'])
states.append(self.data.state_dict())
if len(texts) == batch_size:
for s, tokenized in zip(states, self.tokenizer(texts, return_attention_mask=False)['input_ids']):
self.states = s
yield tokenized
texts, states = [], []
if len(texts) > 0:
for s, tokenized in zip(states, self.tokenizer(texts, return_attention_mask=False)['input_ids']):
self.states = s
yield tokenized

def sample(self, indices):
n_tokens = (len(self.tokens) // self.context_len) * self.context_len
while self.token_id < n_tokens:
i = next(indices)
start, end = self.token_id, self.token_id + self.context_len
self.token_id += self.context_len
yield {'input_ids': self.buffer[i].to(torch.long)}
self.buffer[i] = torch.tensor(self.tokens[start:end], dtype=self.dtype)
self.token_id = 0
self.tokens = self.tokens[n_tokens:]

def randint(
self,
low: int,
high: int,
batch_size: int = 1024,
g: torch.Generator = torch.Generator()
) -> Iterable[int]:
indices = torch.empty(batch_size, dtype=torch.long)
while True:
# record the generator states before sampling
self.rng_state = g.get_state()
indices = torch.randint(low, high, (batch_size,), out=indices, generator=g)
for i in indices[self.rand_id:].tolist():
self.rand_id += 1
yield i
self.rand_id = 0

def set_epoch(self, epoch):
self._epoch = epoch
if hasattr(self.dataset, "set_epoch"):
self.dataset.set_epoch(epoch)

def state_dict(self):
return {
'states': self.states,
'buffer': self.buffer.clone(),
'tokens': deepcopy(self.tokens),
'rand_id': self.rand_id,
'token_id': self.token_id,
'rng_state': self.rng_state,
'epoch': self._epoch
}

def load_state_dict(self, state_dict):
self.states = state_dict['states']
self.buffer = state_dict['buffer'].clone()
self.tokens = deepcopy(state_dict['tokens'])
self.rand_id = state_dict['rand_id']
self.token_id = state_dict['token_id']
self.rng_state = state_dict['rng_state'].clone() if state_dict['rng_state'] is not None else None
self._epoch = state_dict['epoch']


@dataclass
class DataCollatorForLanguageModeling:
Expand Down Expand Up @@ -46,6 +190,8 @@ def tensorize(example: Dict[str, Any]) -> Dict[str, Any]:
tensorized[key] = torch.tensor(example[key], dtype=torch.long)
elif isinstance(example[key], np.ndarray):
tensorized[key] = torch.from_numpy(example[key])
else:
tensorized[key] = example[key]
return tensorized

examples = list(map(tensorize, examples))
Expand Down

0 comments on commit 468c523

Please sign in to comment.