Skip to content

Commit

Permalink
Merge pull request #1064 from Jai-Tushar/moment-based-reffes
Browse files Browse the repository at this point in the history
Crouzeix Raviart Finite Element
  • Loading branch information
JordiManyer authored Dec 9, 2024
2 parents 02a1648 + 289476a commit df1bca9
Show file tree
Hide file tree
Showing 6 changed files with 291 additions and 3 deletions.
59 changes: 59 additions & 0 deletions src/ReferenceFEs/CRRefFEs.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
struct CR <: ReferenceFEName end
const cr = CR()

"""
CRRefFE(::Type{et},p::Polytope,order::Integer) where et
The `order` argument has the following meaning: the divergence of the functions in this basis
is in the P space of degree `order-1`.
"""
function CRRefFE(::Type{T},p::Polytope,order::Integer) where T
D = num_dims(p)

if is_simplex(p) && order == 1
prebasis = MonomialBasis{D}(T,order,Polynomials._p_filter)
fb = MonomialBasis{D-1}(T,0,Polynomials._p_filter)
else
@notimplemented "CR Reference FE only available for simplices and lowest order"
end

function fmom(φ,μ,ds) # Face moment function : σ_F(φ,μ) = 1/|F| ( ∫((φ)*μ)dF )
D = num_dims(ds.cpoly)
facet_measure = get_facet_measure(ds.cpoly, D-1)
facet_measure_1 = Gridap.Fields.ConstantField(1 / facet_measure[ds.face])
φμ = Broadcasting(Operation())(φ,μ)
Broadcasting(Operation(*))(φμ,facet_measure_1)
end

moments = Tuple[
(get_dimrange(p,D-1),fmom,fb), # Face moments
]

return Gridap.ReferenceFEs.MomentBasedReferenceFE(CR(),p,prebasis,moments,L2Conformity())
end


function ReferenceFE(p::Polytope,::CR, order)
CRRefFE(Float64,p,order)
end

function ReferenceFE(p::Polytope,::CR,::Type{T}, order) where T
CRRefFE(T,p,order)
end

function Conformity(reffe::GenericRefFE{CR},sym::Symbol)
if sym == :L2
L2Conformity()
else
@unreachable """\n
It is not possible to use conformity = $sym on a CR reference FE.
Possible values of conformity for this reference fe are $((:L2, hdiv...)).
"""
end
end

function get_face_own_dofs(reffe::GenericRefFE{CR}, conf::L2Conformity)
get_face_dofs(reffe)
end
43 changes: 43 additions & 0 deletions src/ReferenceFEs/MomentBasedReferenceFEs.jl
Original file line number Diff line number Diff line change
Expand Up @@ -166,6 +166,49 @@ function get_extension(m::FaceMeasure{Df,Dc}) where {Df,Dc}
return ConstantField(TensorValue(hcat([vs[2]-vs[1]...],[vs[3]-vs[1]...])))
end

# TO DO: Bug in 3D, when n==2; n==4 and D==3. Also, working on this to make better and more general.
function get_facet_measure(p::Polytope{D}, face::Int) where D
measures = Float64[]
facet_entities = get_face_coordinates(p)
for entity in facet_entities
n = length(entity)
if n == 1
push!(measures, 0.0) # A point has zero measure
elseif n == 2
# Length of an edge
p1, p2 = entity
push!(measures, norm(p2-p1))
elseif n == 3 && D == 2
# Perimeter of the closed polygon
n = length(entity)
perimeter = 0.0
for i in 1:n
p1, p2 = entity[i], entity[mod1(i+1, n)] # cyclic indices
perimeter += norm([p2[1] - p1[1], p2[2] - p1[2]])
end
push!(measures, perimeter)
elseif n == 3 && D == 3
# Area of a simplex
p1, p2, p3 = entity
v1 = [p2[i] - p1[i] for i in 1:D]
v2 = [p3[i] - p1[i] for i in 1:D]
area = 0.5 * norm(cross(v1, v2))
push!(measures, area)
elseif n == 4 && D == 3
# Volume of a tetrahedron ( To do: Should be perimeter of the tetrahedron.)
p1, p2, p3, p4 = entity
v1 = [p2[i] - p1[i] for i in 1:D]
v2 = [p3[i] - p1[i] for i in 1:D]
v3 = [p4[i] - p1[i] for i in 1:D]
volume = abs(dot(v1, cross(v2, v3))) / 6
push!(measures, volume)
end

end
dim = get_dimranges(p)[face+1]
return measures[dim]
end

function Arrays.return_cache(
σ::Function, # σ(φ,μ,ds) -> Field/Array{Field}
φ::AbstractArray{<:Field}, # φ: prebasis (defined on the cell)
Expand Down
5 changes: 5 additions & 0 deletions src/ReferenceFEs/ReferenceFEs.jl
Original file line number Diff line number Diff line change
Expand Up @@ -56,6 +56,7 @@ export get_dimranges
export get_dimrange
export get_vertex_coordinates
export get_facet_normal
export get_facet_measure
export get_facet_orientations
export get_edge_tangent
export get_vertex_permutations
Expand Down Expand Up @@ -182,6 +183,7 @@ export BDMRefFE
export NedelecRefFE
export BezierRefFE
export ModalC0RefFE
export CRRefFE

export Lagrangian
export DivConforming
Expand All @@ -197,6 +199,7 @@ export bdm
export nedelec
export bezier
export modalC0
export cr

export Quadrature
export QuadratureName
Expand Down Expand Up @@ -250,6 +253,8 @@ include("BDMRefFEs.jl")

include("NedelecRefFEs.jl")

include("CRRefFEs.jl")

include("MockDofs.jl")

include("BezierRefFEs.jl")
Expand Down
6 changes: 3 additions & 3 deletions test/ReferenceFEsTests/BDMRefFEsTests.jl
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
module BDMRefFEsTest
# module BDMRefFEsTest

using Test
using Gridap.Polynomials
Expand Down Expand Up @@ -34,7 +34,7 @@ field = GenericField(x->v*x[1])

cache = return_cache(dof_basis,field)
r = evaluate!(cache, dof_basis, field)
test_dof_array(dof_basis,field,r)
@enter test_dof_array(dof_basis,field,r)

cache = return_cache(dof_basis,prebasis)
r = evaluate!(cache, dof_basis, prebasis)
Expand Down Expand Up @@ -98,4 +98,4 @@ reffe = ReferenceFE(TET,bdm,Float64,1)

@test BDM() == bdm

end # module
# end # module
33 changes: 33 additions & 0 deletions test/ReferenceFEsTests/CRRefFEsTests.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
using Gridap
using Gridap.ReferenceFEs
using Gridap.Geometry
using Gridap.Fields
using Gridap.Arrays
using Gridap.ReferenceFEs
using Gridap.Polynomials
using Gridap.Helpers

using FillArrays


p = TRI
D = num_dims(p)

# T = Float64
T = VectorValue{D,Float64}


cr_reffe = CRRefFE(T,p,1)

cr_dofs = get_dof_basis(cr_reffe)
cr_prebasis = get_prebasis(cr_reffe)
cr_shapefuns = get_shapefuns(cr_reffe)

M = evaluate(cr_dofs, cr_shapefuns)

partition = (0,1,0,1)
cells = (2,2)
model = simplexify(CartesianDiscreteModel(partition, cells))

V = FESpace(model,cr_reffe)
get_cell_dof_ids(V)
148 changes: 148 additions & 0 deletions test/ReferenceFEsTests/CrouziexRaviartTests.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,148 @@
module CrouziexRaviartTests

using Gridap
using Gridap.ReferenceFEs, Gridap.Geometry, Gridap.FESpaces, Gridap.Arrays, Gridap.TensorValues
using Gridap.Helpers


function solve_crScalarPoisson(partition, cells, u_exact)

f(x) = - Δ(u_exact)(x)

model = simplexify(CartesianDiscreteModel(partition, cells))

# reffe = CRRefFE(VectorValue{2,Float64},TRI,1)
reffe = CRRefFE(Float64,TRI,1)
V = FESpace(model,reffe,dirichlet_tags="boundary")
U = TrialFESpace(V,u_exact)

Ω = Triangulation(model)
= Measure(Ω,3)

a(u,v) = ( (u)(v) )*
l(v) = ( f*v )*

op = AffineFEOperator(a,l,U,V)
uh = solve(op)
e = uh-u_exact

return sqrt(sum( ( ee )*dΩ ))
end


function solve_crVectorPoisson(partition, cells, u_exact)

f(x) = - Δ(u_exact)(x)

model = simplexify(CartesianDiscreteModel(partition, cells))

reffe = CRRefFE(VectorValue{2,Float64},TRI,1)
V = FESpace(model,reffe,dirichlet_tags="boundary")
U = TrialFESpace(V, u_exact)

Ω = Triangulation(model)
= Measure(Ω,3)

a(u,v) = ( (u) (v) )*
l(v) = ( f v )*

op = AffineFEOperator(a,l,U,V)
uh = solve(op)
e = uh-u_exact

return sqrt(sum( ( ee )*dΩ ))
end

function solve_crStokes(partition, cells, u_exact, p_exact)
f(x) = - Δ(u_exact)(x) + (p_exact)(x)
model = simplexify(CartesianDiscreteModel(partition, cells))

reffe_u = CRRefFE(VectorValue{2,Float64},TRI,1)
reffe_p = ReferenceFE(lagrangian, Float64, 0; space=:P)
V = FESpace(model,reffe_u,dirichlet_tags="boundary")
Q = FESpace(model,reffe_p,conformity=:L2,constraint=:zeromean)
Y = MultiFieldFESpace([V,Q])

U = TrialFESpace(V, u_exact)
P = TrialFESpace(Q)
X = MultiFieldFESpace([U,P])

Ω = Triangulation(model)
= Measure(Ω,3)

a((u,p),(v,q)) = ( (v)(u) - (∇v)*p + q*(∇u) )dΩ
l((v,q)) = ( vf )dΩ

op = AffineFEOperator(a,l,X,Y)
uh, ph = solve(op)
eu = uh-u_exact
ep = ph-p_exact

return sqrt(sum( ( eueu )*dΩ )), sqrt(sum( ( epep )*dΩ ))
end

function conv_test_Stokes(partition,ns,u,p)
el2u = Float64[]
el2p = Float64[]
hs = Float64[]
for n in ns
l2u, l2p = solve_crStokes(partition,(n,n),u,p)
h = 1.0/n
push!(el2u,l2u)
push!(el2p,l2p)
push!(hs,h)
end
println(el2u)
println(el2p)
el2u, el2p, hs
end

function conv_test_Poisson(partition,ns,u)
el2 = Float64[]
hs = Float64[]
for n in ns
l2 = solve_crScalarPoisson(partition,(n,n),u)
println(l2)
h = 1.0/n
push!(el2,l2)
push!(hs,h)
end
println(el2)
el2, hs
end

function slope(hs,errors)
x = log10.(hs)
y = log10.(errors)
linreg = hcat(fill!(similar(x), 1), x) \ y
linreg[2]
end


partition = (0,1,0,1)

# Stokes
u_exact(x) = VectorValue( [sin(pi*x[1])^2*sin(pi*x[2])*cos(pi*x[2]), -sin(pi*x[2])^2*sin(pi*x[1])*cos(pi*x[1])] )
p_exact(x) = sin(2*pi*x[1])*sin(2*pi*x[2])

# Scalar Poisson
u_exact_p(x) = sin(2*π*x[1])*sin(2*π*x[2])

# Vector Poisson
# u_exact(x) = VectorValue( [sin(2*π*x[1])*sin(2*π*x[2]), x[1]*(x[1]-1)*x[2]*(x[2]-1)] )

ns = [4,8,16,32,64]

el, hs = conv_test_Poisson(partition,ns,u_exact_p)
# println("Slope L2-norm u_Poisson: $(slope(hs,el))")

elu, elp, hs = conv_test_Stokes(partition,ns,u_exact,p_exact)
println("Slope L2-norm u_Stokes: $(slope(hs,elu))")
println("Slope L2-norm p_Stokes: $(slope(hs,elp))")

println("Slope L2-norm u_Poisson: $(slope(hs,el))")

end # module



0 comments on commit df1bca9

Please sign in to comment.