Skip to content

Commit

Permalink
Add demo for quadrotor taylor dynamics.
Browse files Browse the repository at this point in the history
This has input limit. The V-rep formulation can work but H-rep will use
up the memory.
Also supports homogeneous_y tag in the Lagrangian.
  • Loading branch information
hongkai-dai committed Oct 5, 2024
1 parent 1c83bb4 commit 02b3f90
Show file tree
Hide file tree
Showing 6 changed files with 371 additions and 33 deletions.
34 changes: 27 additions & 7 deletions compatible_clf_cbf/clf_cbf.py
Original file line number Diff line number Diff line change
Expand Up @@ -119,6 +119,11 @@ class XYDegree:

x: int
y: int
# If set to True, then the each monomial in the polynomial will have y's
# degree equal to self.y. For example if self.y = 2 and
# homogeneous_y = True, then the polynomial can have term like
# x₁²y₁y₂, y₂², but not x₁y₁ (because the degree in y is 1).
homogeneous_y: bool = False

def construct_polynomial(
self,
Expand All @@ -136,9 +141,24 @@ def construct_polynomial(
basis = sym.MonomialBasis(
{x: int(np.floor(self.x / 2)), y: int(np.floor(self.y / 2))}
)
if self.homogeneous_y:
basis_prune = np.array(
[
m
for m in basis
if np.sum([m.degree(y_i) for y_i in y])
== int(np.floor(self.y / 2))
]
)
basis = basis_prune
poly, _ = prog.NewSosPolynomial(basis, type=sos_type)
else:
basis = sym.MonomialBasis({x: self.x, y: self.y})
if self.homogeneous_y:
basis_prune = np.array(
[m for m in basis if np.sum([m.degree(y_i) for y_i in y]) == self.y]
)
basis = basis_prune
coeffs = prog.NewContinuousVariables(basis.size)
poly = sym.Polynomial({basis[i]: coeffs[i] for i in range(basis.size)})
return poly
Expand Down Expand Up @@ -1253,6 +1273,13 @@ def search_lagrangians_given_clf_cbf(
Optional[CompatibleLagrangians],
Optional[SafetySetLagrangians],
]:
safety_set_lagrangians_result = self.certify_cbf_safety_set(
h,
safety_set_lagrangian_degrees,
solver_id,
solver_options,
lagrangian_coefficient_tol,
)
(
prog_compatible,
compatible_lagrangians,
Expand All @@ -1276,13 +1303,6 @@ def search_lagrangians_given_clf_cbf(
else None
)

safety_set_lagrangians_result = self.certify_cbf_safety_set(
h,
safety_set_lagrangian_degrees,
solver_id,
solver_options,
lagrangian_coefficient_tol,
)
return compatible_lagrangians_result, safety_set_lagrangians_result

def search_clf_cbf_given_lagrangian(
Expand Down
49 changes: 26 additions & 23 deletions examples/quadrotor/demo_clf.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
on the quaternion.
"""

import itertools
import os
from typing import Tuple

Expand Down Expand Up @@ -84,32 +85,14 @@ def main(with_u_bound: bool):

if with_u_bound:
thrust_max = quadrotor.m * quadrotor.g
u_vertices = thrust_max * np.array(
[
[0, 0, 0, 0],
[0, 0, 0, 1],
[0, 0, 1, 0],
[0, 0, 1, 1],
[0, 1, 0, 0],
[0, 1, 0, 1],
[0, 1, 1, 0],
[0, 1, 1, 1],
[1, 0, 0, 0],
[1, 0, 0, 1],
[1, 0, 1, 0],
[1, 0, 1, 1],
[1, 1, 0, 0],
[1, 1, 0, 1],
[1, 1, 1, 0],
[1, 1, 1, 1],
]
)
u_vertices = np.array(list(itertools.product([0, thrust_max], repeat=4)))
else:
u_vertices = None

state_eq_constraints = quadrotor.equality_constraint(x)

V_degree = 2
print("Find regional CLF.")
V_init = find_trig_regional_clf(V_degree, x)
kappa_V = 0.1
solver_options = solvers.SolverOptions()
Expand All @@ -134,13 +117,33 @@ def main(with_u_bound: bool):
rho_minus_V=4,
state_eq_constraints=[4],
)
clf_search.search_lagrangian_given_clf(
candidate_stable_states = np.zeros((4, 13))
candidate_stable_states[0, 4:7] = np.array([1, 0, 0])
candidate_stable_states[1, 4:7] = np.array([-1, 0, 0])
candidate_stable_states[2, 4:7] = np.array([0, 1, 0])
candidate_stable_states[3, 4:7] = np.array([0, -1, 0])
stable_states_options = clf.StableStatesOptions(
candidate_stable_states=candidate_stable_states, V_margin=0.01
)
print("Bilinear alternation.")
V = clf_search.bilinear_alternation(
V_init,
rho=1,
clf_lagrangian_degrees,
kappa=kappa_V,
lagrangian_degrees=clf_lagrangian_degrees,
clf_degree=2,
x_equilibrium=np.zeros((13,)),
max_iter=5,
stable_states_options=stable_states_options,
solver_options=solver_options,
)
clf.save_clf(
V,
clf_search.x_set,
kappa=kappa_V,
pickle_path=os.path.join(
os.path.dirname(os.path.abspath(__file__)), "../../data/quadrotor_clf.pkl"
),
)
return


Expand Down
176 changes: 176 additions & 0 deletions examples/quadrotor/demo_taylor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,176 @@
"""
Certify the compatible CLF/CBF using taylor expansion of the 12-state quadrotor
dynamics.
"""

import itertools
import os

import numpy as np
import pydrake.solvers as solvers
import pydrake.symbolic as sym

import compatible_clf_cbf.clf_cbf as clf_cbf
import compatible_clf_cbf.clf as clf
from compatible_clf_cbf.utils import BackoffScale
from examples.quadrotor.plant import QuadrotorPlant


def search(use_y_squared: bool, with_u_bound: bool, use_v_rep: bool):
x = sym.MakeVectorContinuousVariable(12, "x")
quadrotor = QuadrotorPlant()
f, g = quadrotor.affine_dynamics_taylor(x, np.zeros((12,)), f_degree=3, g_degree=2)

if with_u_bound:
u_bound = quadrotor.m * quadrotor.g
if use_v_rep:
u_vertices = np.array(list(itertools.product([0, u_bound], repeat=4)))
u_extreme_rays = None
Au = None
bu = None
else:
Au = np.concatenate((np.eye(4), -np.eye(4)), axis=0)
bu = np.concatenate((np.full((4,), u_bound), np.zeros((4,))))
u_vertices = None
u_extreme_rays = None
else:
u_vertices = None
u_extreme_rays = None
Au, bu = None, None

exclude_sets = [clf_cbf.ExcludeSet(np.array([sym.Polynomial(x[2] + 2.5)]))]

compatible = clf_cbf.CompatibleClfCbf(
f=f,
g=g,
x=x,
exclude_sets=exclude_sets,
within_set=None,
Au=Au,
bu=bu,
u_vertices=u_vertices,
u_extreme_rays=u_extreme_rays,
num_cbf=1,
with_clf=True,
use_y_squared=use_y_squared,
state_eq_constraints=None,
)

x_set = sym.Variables(x)
V_init = clf.load_clf(
os.path.join(
os.path.dirname(os.path.abspath(__file__)),
"../../data/quadrotor_taylor_clf.pkl",
),
x_set,
)["V"]

h_init = np.array([1 - V_init])

if with_u_bound and use_v_rep:
compatible_lagrangian_degrees = clf_cbf.CompatibleWVrepLagrangianDegrees(
u_vertices=[clf_cbf.XYDegree(x=2, y=0) for _ in range(u_vertices.shape[0])],
u_extreme_rays=None,
xi_y=None,
y=(
None
if use_y_squared
else [clf_cbf.XYDegree(x=6, y=0) for _ in range(compatible.y.size)]
),
y_cross=(
None
if use_y_squared
else [
clf_cbf.XYDegree(x=4, y=0)
for _ in range(compatible.y_cross_poly.size)
]
),
rho_minus_V=clf_cbf.XYDegree(x=4, y=2, homogeneous_y=True),
h_plus_eps=[clf_cbf.XYDegree(x=4, y=2, homogeneous_y=True)],
state_eq_constraints=None,
)
else:
compatible_lagrangian_degrees = clf_cbf.CompatibleLagrangianDegrees(
lambda_y=[clf_cbf.XYDegree(x=2, y=0) for _ in range(4)],
xi_y=clf_cbf.XYDegree(x=1, y=0),
y=(
None
if use_y_squared
else [clf_cbf.XYDegree(x=4, y=0) for _ in range(compatible.y.size)]
),
y_cross=(
None
if use_y_squared
else [
clf_cbf.XYDegree(x=4, y=0)
for _ in range(compatible.y_cross_poly.size)
]
),
rho_minus_V=clf_cbf.XYDegree(x=2, y=2, homogeneous_y=True),
h_plus_eps=[clf_cbf.XYDegree(x=2, y=2, homogeneous_y=True)],
state_eq_constraints=None,
)
safety_sets_lagrangian_degrees = clf_cbf.SafetySetLagrangianDegrees(
exclude=[
clf_cbf.ExcludeRegionLagrangianDegrees(
cbf=[0], unsafe_region=[0], state_eq_constraints=[0]
)
],
within=[],
)
barrier_eps = np.array([0.000])
x_equilibrium = np.zeros((12,))

candidate_compatible_states = np.zeros((4, 12))
candidate_compatible_states[0, :3] = np.array([-1.5, 0, 0])
candidate_compatible_states[1, :3] = np.array([1.5, 0, 0])
candidate_compatible_states[2, :3] = np.array([0, 1.5, 0])
candidate_compatible_states[3, :3] = np.array([0, -1.5, 0])

compatible_states_options = clf_cbf.CompatibleStatesOptions(
candidate_compatible_states=candidate_compatible_states,
anchor_states=np.zeros((1, 12)),
h_anchor_bounds=[(np.array([0.5]), np.array([1.0]))],
weight_V=1,
weight_h=np.array([1]),
V_margin=None,
h_margins=None,
)

solver_options = solvers.SolverOptions()
solver_options.SetOption(solvers.CommonSolverOption.kPrintToConsole, True)

kappa_V = 0.1
kappa_h = np.array([0.1])
V_degree = 2
h_degrees = [2]
backoff_scale = BackoffScale(rel=None, abs=0.001)
V, h = compatible.bilinear_alternation(
V_init,
h_init,
compatible_lagrangian_degrees,
safety_sets_lagrangian_degrees,
kappa_V,
kappa_h,
barrier_eps,
x_equilibrium,
V_degree,
h_degrees,
max_iter=5,
solver_options=solver_options,
lagrangian_coefficient_tol=None,
compatible_states_options=compatible_states_options,
backoff_scale=backoff_scale,
lagrangian_sos_type=solvers.MathematicalProgram.NonnegativePolynomial.kSos,
)


def main():
# search(use_y_squared=True, with_u_bound=False, use_v_rep=False)
# Using H-rep will cause out-of-memory issue.
# search(use_y_squared=True, with_u_bound=True, use_v_rep=False)
search(use_y_squared=True, with_u_bound=True, use_v_rep=True)


if __name__ == "__main__":
main()
Loading

0 comments on commit 02b3f90

Please sign in to comment.