-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add demo for quadrotor taylor dynamics.
This has input limit. The V-rep formulation can work but H-rep will use up the memory. Also supports homogeneous_y tag in the Lagrangian.
- Loading branch information
1 parent
1c83bb4
commit 02b3f90
Showing
6 changed files
with
371 additions
and
33 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,176 @@ | ||
""" | ||
Certify the compatible CLF/CBF using taylor expansion of the 12-state quadrotor | ||
dynamics. | ||
""" | ||
|
||
import itertools | ||
import os | ||
|
||
import numpy as np | ||
import pydrake.solvers as solvers | ||
import pydrake.symbolic as sym | ||
|
||
import compatible_clf_cbf.clf_cbf as clf_cbf | ||
import compatible_clf_cbf.clf as clf | ||
from compatible_clf_cbf.utils import BackoffScale | ||
from examples.quadrotor.plant import QuadrotorPlant | ||
|
||
|
||
def search(use_y_squared: bool, with_u_bound: bool, use_v_rep: bool): | ||
x = sym.MakeVectorContinuousVariable(12, "x") | ||
quadrotor = QuadrotorPlant() | ||
f, g = quadrotor.affine_dynamics_taylor(x, np.zeros((12,)), f_degree=3, g_degree=2) | ||
|
||
if with_u_bound: | ||
u_bound = quadrotor.m * quadrotor.g | ||
if use_v_rep: | ||
u_vertices = np.array(list(itertools.product([0, u_bound], repeat=4))) | ||
u_extreme_rays = None | ||
Au = None | ||
bu = None | ||
else: | ||
Au = np.concatenate((np.eye(4), -np.eye(4)), axis=0) | ||
bu = np.concatenate((np.full((4,), u_bound), np.zeros((4,)))) | ||
u_vertices = None | ||
u_extreme_rays = None | ||
else: | ||
u_vertices = None | ||
u_extreme_rays = None | ||
Au, bu = None, None | ||
|
||
exclude_sets = [clf_cbf.ExcludeSet(np.array([sym.Polynomial(x[2] + 2.5)]))] | ||
|
||
compatible = clf_cbf.CompatibleClfCbf( | ||
f=f, | ||
g=g, | ||
x=x, | ||
exclude_sets=exclude_sets, | ||
within_set=None, | ||
Au=Au, | ||
bu=bu, | ||
u_vertices=u_vertices, | ||
u_extreme_rays=u_extreme_rays, | ||
num_cbf=1, | ||
with_clf=True, | ||
use_y_squared=use_y_squared, | ||
state_eq_constraints=None, | ||
) | ||
|
||
x_set = sym.Variables(x) | ||
V_init = clf.load_clf( | ||
os.path.join( | ||
os.path.dirname(os.path.abspath(__file__)), | ||
"../../data/quadrotor_taylor_clf.pkl", | ||
), | ||
x_set, | ||
)["V"] | ||
|
||
h_init = np.array([1 - V_init]) | ||
|
||
if with_u_bound and use_v_rep: | ||
compatible_lagrangian_degrees = clf_cbf.CompatibleWVrepLagrangianDegrees( | ||
u_vertices=[clf_cbf.XYDegree(x=2, y=0) for _ in range(u_vertices.shape[0])], | ||
u_extreme_rays=None, | ||
xi_y=None, | ||
y=( | ||
None | ||
if use_y_squared | ||
else [clf_cbf.XYDegree(x=6, y=0) for _ in range(compatible.y.size)] | ||
), | ||
y_cross=( | ||
None | ||
if use_y_squared | ||
else [ | ||
clf_cbf.XYDegree(x=4, y=0) | ||
for _ in range(compatible.y_cross_poly.size) | ||
] | ||
), | ||
rho_minus_V=clf_cbf.XYDegree(x=4, y=2, homogeneous_y=True), | ||
h_plus_eps=[clf_cbf.XYDegree(x=4, y=2, homogeneous_y=True)], | ||
state_eq_constraints=None, | ||
) | ||
else: | ||
compatible_lagrangian_degrees = clf_cbf.CompatibleLagrangianDegrees( | ||
lambda_y=[clf_cbf.XYDegree(x=2, y=0) for _ in range(4)], | ||
xi_y=clf_cbf.XYDegree(x=1, y=0), | ||
y=( | ||
None | ||
if use_y_squared | ||
else [clf_cbf.XYDegree(x=4, y=0) for _ in range(compatible.y.size)] | ||
), | ||
y_cross=( | ||
None | ||
if use_y_squared | ||
else [ | ||
clf_cbf.XYDegree(x=4, y=0) | ||
for _ in range(compatible.y_cross_poly.size) | ||
] | ||
), | ||
rho_minus_V=clf_cbf.XYDegree(x=2, y=2, homogeneous_y=True), | ||
h_plus_eps=[clf_cbf.XYDegree(x=2, y=2, homogeneous_y=True)], | ||
state_eq_constraints=None, | ||
) | ||
safety_sets_lagrangian_degrees = clf_cbf.SafetySetLagrangianDegrees( | ||
exclude=[ | ||
clf_cbf.ExcludeRegionLagrangianDegrees( | ||
cbf=[0], unsafe_region=[0], state_eq_constraints=[0] | ||
) | ||
], | ||
within=[], | ||
) | ||
barrier_eps = np.array([0.000]) | ||
x_equilibrium = np.zeros((12,)) | ||
|
||
candidate_compatible_states = np.zeros((4, 12)) | ||
candidate_compatible_states[0, :3] = np.array([-1.5, 0, 0]) | ||
candidate_compatible_states[1, :3] = np.array([1.5, 0, 0]) | ||
candidate_compatible_states[2, :3] = np.array([0, 1.5, 0]) | ||
candidate_compatible_states[3, :3] = np.array([0, -1.5, 0]) | ||
|
||
compatible_states_options = clf_cbf.CompatibleStatesOptions( | ||
candidate_compatible_states=candidate_compatible_states, | ||
anchor_states=np.zeros((1, 12)), | ||
h_anchor_bounds=[(np.array([0.5]), np.array([1.0]))], | ||
weight_V=1, | ||
weight_h=np.array([1]), | ||
V_margin=None, | ||
h_margins=None, | ||
) | ||
|
||
solver_options = solvers.SolverOptions() | ||
solver_options.SetOption(solvers.CommonSolverOption.kPrintToConsole, True) | ||
|
||
kappa_V = 0.1 | ||
kappa_h = np.array([0.1]) | ||
V_degree = 2 | ||
h_degrees = [2] | ||
backoff_scale = BackoffScale(rel=None, abs=0.001) | ||
V, h = compatible.bilinear_alternation( | ||
V_init, | ||
h_init, | ||
compatible_lagrangian_degrees, | ||
safety_sets_lagrangian_degrees, | ||
kappa_V, | ||
kappa_h, | ||
barrier_eps, | ||
x_equilibrium, | ||
V_degree, | ||
h_degrees, | ||
max_iter=5, | ||
solver_options=solver_options, | ||
lagrangian_coefficient_tol=None, | ||
compatible_states_options=compatible_states_options, | ||
backoff_scale=backoff_scale, | ||
lagrangian_sos_type=solvers.MathematicalProgram.NonnegativePolynomial.kSos, | ||
) | ||
|
||
|
||
def main(): | ||
# search(use_y_squared=True, with_u_bound=False, use_v_rep=False) | ||
# Using H-rep will cause out-of-memory issue. | ||
# search(use_y_squared=True, with_u_bound=True, use_v_rep=False) | ||
search(use_y_squared=True, with_u_bound=True, use_v_rep=True) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
Oops, something went wrong.