-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Use trigonometric polynomial dynamics with input limits. Add the plot.
- Loading branch information
1 parent
202077f
commit 9f38f95
Showing
2 changed files
with
282 additions
and
124 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,282 @@ | ||
""" | ||
Find the CLF/CBF without the input limits. | ||
We use the trigonometric state with polynomial dynamics. | ||
""" | ||
|
||
import os | ||
from typing import Optional, Tuple | ||
|
||
import matplotlib.axes | ||
import matplotlib.contour | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
|
||
import pydrake.symbolic as sym | ||
import pydrake.solvers as solvers | ||
|
||
import compatible_clf_cbf.clf_cbf as clf_cbf | ||
import compatible_clf_cbf.utils as utils | ||
import examples.nonlinear_toy.toy_system as toy_system | ||
|
||
|
||
def plot_clf_cbf( | ||
ax: matplotlib.axes.Axes, | ||
V: sym.Polynomial, | ||
b: np.ndarray, | ||
x: np.ndarray, | ||
fill_compatible: bool, | ||
) -> Tuple[ | ||
matplotlib.contour.QuadContourSet, | ||
matplotlib.contour.QuadContourSet, | ||
Optional[matplotlib.contour.QuadContourSet], | ||
]: | ||
""" | ||
Plot the CLF/CBF in the θ, θdot plane. | ||
Args: | ||
fill_compatible: Fill in the compatible region. | ||
""" | ||
grid_theta, grid_theta_dot = np.meshgrid( | ||
np.linspace(-np.pi, np.pi, 100), np.linspace(-3, 3, 100) | ||
) | ||
grid_x_vals = np.concatenate( | ||
( | ||
np.sin(grid_theta.reshape((1, -1))), | ||
np.cos(grid_theta.reshape((1, -1))) - 1, | ||
grid_theta_dot.reshape((1, -1)), | ||
), | ||
axis=0, | ||
) | ||
grid_V = V.EvaluateIndeterminates(x, grid_x_vals).reshape(grid_theta.shape) | ||
grid_b = b[0].EvaluateIndeterminates(x, grid_x_vals).reshape(grid_theta.shape) | ||
h_V = ax.contour( | ||
grid_theta, grid_theta_dot, grid_V, levels=np.array([1]), colors="red" | ||
) | ||
h_b = ax.contour( | ||
grid_theta, grid_theta_dot, grid_b, levels=np.array([0]), colors="blue" | ||
) | ||
|
||
if fill_compatible: | ||
# Fill in the region {x|V(x)<=1, b(x) >= 0}, namely | ||
# {x | max(V(x)-1, -b(x)) <= 0}. | ||
grid_fill_vals = np.maximum(grid_V - 1, -grid_b) | ||
h_compatible = ax.contourf( | ||
grid_theta, | ||
grid_theta_dot, | ||
grid_fill_vals, | ||
levels=[-np.inf, 0], | ||
colors="green", | ||
alpha=0.2, | ||
) | ||
else: | ||
h_compatible = None | ||
|
||
return h_V, h_b, h_compatible | ||
|
||
|
||
def get_unsafe_regions(x: np.ndarray) -> np.ndarray: | ||
return np.array([sym.Polynomial(x[0] + x[1] + x[2] + 2)]) | ||
|
||
|
||
def plot_unsafe_regions(ax: matplotlib.axes.Axes): | ||
x = sym.MakeVectorContinuousVariable(3, "x") | ||
unsafe_regions = get_unsafe_regions(x) | ||
grid_theta, grid_theta_dot = np.meshgrid( | ||
np.linspace(-np.pi, np.pi, 100), np.linspace(-3, 3, 100) | ||
) | ||
grid_x_vals = np.concatenate( | ||
( | ||
np.sin(grid_theta.reshape((1, -1))), | ||
np.cos(grid_theta.reshape((1, -1))) - 1, | ||
grid_theta_dot.reshape((1, -1)), | ||
), | ||
axis=0, | ||
) | ||
unsafe_values = ( | ||
np.concatenate( | ||
[ | ||
region.EvaluateIndeterminates(x, grid_x_vals).reshape((1, -1)) | ||
for region in unsafe_regions | ||
], | ||
axis=0, | ||
) | ||
.max(axis=0) | ||
.reshape(grid_theta.shape) | ||
) | ||
h_unsafe = ax.contourf( | ||
grid_theta, | ||
grid_theta_dot, | ||
unsafe_values, | ||
levels=np.array([-np.inf, 0.0]), | ||
alpha=0.5, | ||
colors="grey", | ||
) | ||
return h_unsafe | ||
|
||
|
||
def get_clf_cbf_init(x: np.ndarray) -> Tuple[sym.Polynomial, np.ndarray]: | ||
V_init = sym.Polynomial(x[0] ** 2 + x[1] ** 2 + x[2] ** 2) / 0.1 | ||
b_init = np.array([sym.Polynomial(0.1 - x[0] ** 2 - x[1] ** 2 - x[2] ** 2)]) | ||
return V_init, b_init | ||
|
||
|
||
def plot_clf_cbf_init( | ||
ax: matplotlib.axes.Axes, | ||
) -> Tuple[matplotlib.contour.QuadContourSet, matplotlib.contour.QuadContourSet]: | ||
x = sym.MakeVectorContinuousVariable(3, "x") | ||
V_init, b_init = get_clf_cbf_init(x) | ||
h_V_init, h_b_init, _ = plot_clf_cbf(ax, V_init, b_init, x, fill_compatible=False) | ||
h_V_init.set(linestyle="dotted", edgecolor="r") | ||
h_b_init.set(linestyle=(0, (3, 5, 1, 5)), edgecolor="b") | ||
return h_V_init, h_b_init | ||
|
||
|
||
def search(): | ||
x = sym.MakeVectorContinuousVariable(3, "x") | ||
f, g = toy_system.affine_trig_poly_dynamics(x) | ||
state_eq_constraints = np.array([toy_system.affine_trig_poly_state_constraints(x)]) | ||
use_y_squared = True | ||
compatible = clf_cbf.CompatibleClfCbf( | ||
f=f, | ||
g=g, | ||
x=x, | ||
unsafe_regions=[get_unsafe_regions(x)], | ||
Au=np.array([[1], [-1]]), | ||
bu=np.array([1, 1]), | ||
with_clf=True, | ||
use_y_squared=use_y_squared, | ||
state_eq_constraints=state_eq_constraints, | ||
) | ||
V_init, b_init = get_clf_cbf_init(x) | ||
|
||
compatible_lagrangian_degrees = clf_cbf.CompatibleLagrangianDegrees( | ||
lambda_y=[clf_cbf.CompatibleLagrangianDegrees.Degree(x=2, y=0)], | ||
xi_y=clf_cbf.CompatibleLagrangianDegrees.Degree(x=2, y=0), | ||
y=None, | ||
rho_minus_V=clf_cbf.CompatibleLagrangianDegrees.Degree(x=2, y=2), | ||
b_plus_eps=[clf_cbf.CompatibleLagrangianDegrees.Degree(x=2, y=2)], | ||
state_eq_constraints=[clf_cbf.CompatibleLagrangianDegrees.Degree(x=2, y=2)], | ||
) | ||
unsafe_region_lagrangian_degrees = [ | ||
clf_cbf.UnsafeRegionLagrangianDegrees( | ||
cbf=0, unsafe_region=[0], state_eq_constraints=[0] | ||
) | ||
] | ||
kappa_V = 0.01 | ||
kappa_b = np.array([0.01]) | ||
barrier_eps = np.array([0.001]) | ||
|
||
x_equilibrium = np.array([0, 0.0, 0.0]) | ||
|
||
clf_degree = 2 | ||
cbf_degrees = [2] | ||
max_iter = 20 | ||
|
||
binary_search_scale_options = None | ||
inner_ellipsoid_options = None | ||
compatible_states_options = clf_cbf.CompatibleStatesOptions( | ||
candidate_compatible_states=np.array( | ||
[ | ||
[np.sin(-np.pi / 3), np.cos(-np.pi / 3) - 1, -0.5], | ||
[np.sin(0), np.cos(0) - 1, -1.5], | ||
[np.sin(np.pi / 2), np.cos(np.pi / 2) - 1, -1.9], | ||
] | ||
), | ||
anchor_states=np.array([[0.0, 0, 0]]), | ||
b_anchor_bounds=[(np.array([0]), np.array([0.1]))], | ||
weight_V=1, | ||
weight_b=np.array([1.0]), | ||
b_margins=np.array([0.01]), | ||
) | ||
solver_options = solvers.SolverOptions() | ||
solver_options.SetOption(solvers.CommonSolverOption.kPrintToConsole, 0) | ||
|
||
V, b = compatible.bilinear_alternation( | ||
V_init, | ||
b_init, | ||
compatible_lagrangian_degrees, | ||
unsafe_region_lagrangian_degrees, | ||
kappa_V, | ||
kappa_b, | ||
barrier_eps, | ||
x_equilibrium, | ||
clf_degree, | ||
cbf_degrees, | ||
max_iter, | ||
inner_ellipsoid_options=inner_ellipsoid_options, | ||
binary_search_scale_options=binary_search_scale_options, | ||
compatible_states_options=compatible_states_options, | ||
solver_options=solver_options, | ||
backoff_scale=utils.BackoffScale(rel=None, abs=0.01), | ||
) | ||
print(f"V={V}") | ||
print(f"b={b}") | ||
assert V is not None | ||
x_set = sym.Variables(x) | ||
clf_cbf.save_clf_cbf( | ||
V, | ||
b, | ||
x_set, | ||
kappa_V, | ||
kappa_b, | ||
os.path.join( | ||
os.path.dirname(os.path.abspath(__file__)), | ||
"../../data/nonlinear_toy_clf_cbf.pkl", | ||
), | ||
) | ||
return V, b | ||
|
||
|
||
def visualize(): | ||
x = sym.MakeVectorContinuousVariable(3, "x") | ||
f, g = toy_system.affine_trig_poly_dynamics(x) | ||
path = os.path.join( | ||
os.path.dirname(os.path.abspath(__file__)), | ||
"../../data/nonlinear_toy_clf_cbf.pkl", | ||
) | ||
x_set = sym.Variables(x) | ||
saved_data = clf_cbf.load_clf_cbf(path, x_set) | ||
fig = plt.figure() | ||
ax = fig.add_subplot() | ||
ax.set_xlabel(r"$\theta$ (rad)", fontsize=16) | ||
ax.set_ylabel(r"$\dot{\theta}$ (rad/s)", fontsize=16) | ||
ax.set_xticks([-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi]) | ||
ax.set_xticklabels( | ||
[r"$-\pi$", r"$-\frac{\pi}{2}$", r"0", r"$\frac{\pi}{2}$", r"$\pi$"] | ||
) | ||
ax.tick_params(axis="both", which="major", labelsize=14) | ||
h_V, h_b, h_compatible = plot_clf_cbf( | ||
ax, saved_data["V"], saved_data["b"], x, fill_compatible=True | ||
) | ||
h_V_init, h_b_init = plot_clf_cbf_init(ax) | ||
plot_unsafe_regions(ax) | ||
ax.legend( | ||
[ | ||
h_V.legend_elements()[0][0], | ||
h_b.legend_elements()[0][0], | ||
h_V_init.legend_elements()[0][0], | ||
h_b_init.legend_elements()[0][0], | ||
], | ||
[r"$V(x)=1$", r"$b(x)=0$", r"$V_{init}(x)=1$", r"$b_{init}(x)=0$"], | ||
prop={"size": 12}, | ||
) | ||
fig.show() | ||
for fig_extension in (".png", "pdf"): | ||
fig.savefig( | ||
os.path.join( | ||
os.path.dirname(os.path.abspath(__file__)), | ||
f"../../figures/nonlinear_toy{fig_extension}", | ||
), | ||
bbox_inches="tight", | ||
) | ||
|
||
pass | ||
|
||
|
||
def main(): | ||
V, b = search() | ||
visualize() | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
Oops, something went wrong.