Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add a toy 2D system with nonlinear dynamics. #18

Merged
merged 1 commit into from
Dec 15, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions .github/workflows/python-app.yml
Original file line number Diff line number Diff line change
Expand Up @@ -23,3 +23,5 @@ jobs:
run: pytest tests
- name: run linear_toy_demo
run: python examples/linear_toy/linear_toy_demo.py
- name: run nonlinear_toy_demo
run: python examples/nonlinear_toy/wo_input_limits_demo.py
3 changes: 2 additions & 1 deletion compatible_clf_cbf/clf_cbf.py
Original file line number Diff line number Diff line change
Expand Up @@ -341,7 +341,7 @@ def certify_cbf_unsafe_region(
Certifies that the 0-superlevel set {x | bᵢ(x) >= 0} does not intersect
with the unsafe region self.unsafe_regions[unsafe_region_index].

If we denote the unsafe region as {x | q(x) <= 0}, then we impose the constraint
If we denote the unsafe region as {x | p(x) <= 0}, then we impose the constraint

We impose the constraint
-(1+ϕᵢ,₀(x))*bᵢ(x) +∑ⱼϕᵢ,ⱼ(x)pⱼ(x) is sos
Expand Down Expand Up @@ -546,6 +546,7 @@ def _add_compatibility(

# Compute s₄(x, y)ᵀ(b(x)+ε)
if barrier_eps is not None:
assert np.all(barrier_eps >= 0)
assert lagrangians.b_plus_eps is not None
poly -= lagrangians.b_plus_eps.dot(barrier_eps + b)

Expand Down
11 changes: 11 additions & 0 deletions examples/nonlinear_toy/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
We search for the compatible CLF and CBF function of a nonlinear dynamical system with 2 states

$$
\begin{align*}
\dot{x}_0 =& u\\
\dot{x}_1 =& -x_0 + \frac{1}{6}x_0^3 - u
\end{align*}
$$
We will consider the case with or without the input limits on $u$.

This system is introduced in *Searching for control Lyapunov functions using sums-of-squares programming* by Weehong Tan and Andrew Packard.
34 changes: 34 additions & 0 deletions examples/nonlinear_toy/toy_system.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
from typing import Tuple

import numpy as np
import pydrake.symbolic as sym


def affine_dynamics(x: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""
Compute the dynamics
ẋ₀ = u
ẋ₁ = −x₀ + 1/6x₀³−u
as ẋ = f(x) + g(x)*u

return f and g.
"""
assert x.shape == (2,)
if x.dtype == object:
f = np.array(
[
sym.Polynomial(),
sym.Polynomial(
{
sym.Monomial(x[0]): sym.Expression(-1),
sym.Monomial(x[0], 3): sym.Expression(1.0 / 6.0),
}
),
]
)
g = np.array([[sym.Polynomial(1)], [sym.Polynomial(-1)]])
else:
f = np.array([0, -x[0] + x[0] ** 3 / 6])
g = np.array([[1], [-1]])

return (f, g)
65 changes: 65 additions & 0 deletions examples/nonlinear_toy/wo_input_limits_demo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
"""
Find the compatible CLF/CBF with no input limits.
"""
import numpy as np
import pydrake.solvers as solvers
import pydrake.symbolic as sym

from compatible_clf_cbf import clf_cbf
from examples.nonlinear_toy import toy_system


def main(use_y_squared: bool):
x = sym.MakeVectorContinuousVariable(2, "x")
f, g = toy_system.affine_dynamics(x)
use_y_squared = True
compatible = clf_cbf.CompatibleClfCbf(
f=f,
g=g,
x=x,
unsafe_regions=[np.array([sym.Polynomial(x[0] + 10)])],
Au=None,
bu=None,
with_clf=True,
use_y_squared=use_y_squared,
)
V_init = sym.Polynomial(x[0] ** 2 + x[1] ** 2)
b_init = np.array([sym.Polynomial(0.001 - x[0] ** 2 - x[1] ** 2)])
kappa_V = 1e-3
kappa_b = np.array([kappa_V])

lagrangian_degrees = clf_cbf.CompatibleLagrangianDegrees(
lambda_y=[clf_cbf.CompatibleLagrangianDegrees.Degree(x=3, y=0)],
xi_y=clf_cbf.CompatibleLagrangianDegrees.Degree(x=2, y=0),
y=None
if use_y_squared
else [
clf_cbf.CompatibleLagrangianDegrees.Degree(x=4, y=0)
for _ in range(compatible.y.size)
],
rho_minus_V=clf_cbf.CompatibleLagrangianDegrees.Degree(x=2, y=0),
b_plus_eps=[clf_cbf.CompatibleLagrangianDegrees.Degree(x=2, y=0)],
)
rho = 0.01
barrier_eps = np.array([0.0001])
(
compatible_prog,
compatible_lagrangians,
) = compatible.construct_search_compatible_lagrangians(
V_init, b_init, kappa_V, kappa_b, lagrangian_degrees, rho, barrier_eps
)
compatible_result = solvers.Solve(compatible_prog)
assert compatible_result.is_success()

compatible.certify_cbf_unsafe_region(
unsafe_region_index=0,
cbf=b_init[0],
cbf_lagrangian_degree=0,
unsafe_region_lagrangian_degrees=[0],
solver_options=None,
)


if __name__ == "__main__":
main(use_y_squared=True)
main(use_y_squared=False)