Skip to content

Commit

Permalink
Stokes/Elasticity using biharmonic/Laplace
Browse files Browse the repository at this point in the history
  • Loading branch information
isuruf committed Jun 27, 2022
1 parent 1337297 commit acc5ae0
Show file tree
Hide file tree
Showing 6 changed files with 1,318 additions and 366 deletions.
166 changes: 166 additions & 0 deletions pytential/symbolic/elasticity.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,166 @@
__copyright__ = "Copyright (C) 2021 Isuru Fernando"

__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""

import numpy as np

from pytential import sym
from sumpy.kernel import (AxisTargetDerivative, AxisSourceDerivative,
TargetPointMultiplier, LaplaceKernel)
from pytential.symbolic.stokes import (StressletWrapperBase, StokesletWrapperBase,
_MU_SYM_DEFAULT)


class StressletWrapperYoshida(StressletWrapperBase):
"""Stresslet Wrapper using Yoshida et al's method [1] which uses Laplace
derivatives.
[1] Yoshida, K. I., Nishimura, N., & Kobayashi, S. (2001). Application of
fast multipole Galerkin boundary integral equation method to elastostatic
crack problems in 3D.
International Journal for Numerical Methods in Engineering, 50(3), 525-547.
"""

def __init__(self, dim=None, mu_sym=_MU_SYM_DEFAULT, nu_sym=0.5):
self.dim = dim
if dim != 3:
raise ValueError("unsupported dimension given to "
"StressletWrapperYoshida")
self.kernel = LaplaceKernel(dim=3)
self.mu = mu_sym
self.nu = nu_sym

def apply(self, density_vec_sym, dir_vec_sym, qbx_forced_limit,
extra_deriv_dirs=()):
return self.apply_stokeslet_and_stresslet([0]*self.dim,
density_vec_sym, dir_vec_sym, qbx_forced_limit, 0, 1,
extra_deriv_dirs)

def apply_stokeslet_and_stresslet(self, stokeslet_density_vec_sym,
stresslet_density_vec_sym, dir_vec_sym,
qbx_forced_limit, stokeslet_weight, stresslet_weight,
extra_deriv_dirs=()):

mu = self.mu
nu = self.nu
lam = 2*nu*mu/(1-2*nu)
stokeslet_weight *= -1

def C(i, j, k, l): # noqa: E741
res = 0
if i == j and k == l:
res += lam
if i == k and j == l:
res += mu
if i == l and j == k:
res += mu
return res * stresslet_weight

def add_extra_deriv_dirs(target_kernel):
for deriv_dir in extra_deriv_dirs:
target_kernel = AxisTargetDerivative(deriv_dir, target_kernel)
return target_kernel

def P(i, j, int_g):
int_g = int_g.copy(target_kernel=add_extra_deriv_dirs(
int_g.target_kernel))
res = -int_g.copy(target_kernel=TargetPointMultiplier(j,
AxisTargetDerivative(i, int_g.target_kernel)))
if i == j:
res += (3 - 4*nu)*int_g
return res / (4*mu*(1 - nu))

def Q(i, int_g):
res = int_g.copy(target_kernel=add_extra_deriv_dirs(
AxisTargetDerivative(i, int_g.target_kernel)))
return res / (4*mu*(1 - nu))

sym_expr = np.zeros((3,), dtype=object)

kernel = self.kernel
source = [sym.NodeCoordinateComponent(d) for d in range(3)]
normal = dir_vec_sym
sigma = stresslet_density_vec_sym

source_kernels = [None]*4
for i in range(3):
source_kernels[i] = AxisSourceDerivative(i, kernel)
source_kernels[3] = kernel

for i in range(3):
for k in range(3):
densities = [0]*4
for l in range(3): # noqa: E741
for j in range(3):
for m in range(3):
densities[l] += C(k, l, m, j)*normal[m]*sigma[j]
densities[3] += stokeslet_weight * stokeslet_density_vec_sym[k]
int_g = sym.IntG(target_kernel=kernel,
source_kernels=tuple(source_kernels),
densities=tuple(densities),
qbx_forced_limit=qbx_forced_limit)
sym_expr[i] += P(i, k, int_g)

densities = [0]*4
for k in range(3):
for m in range(3):
for j in range(3):
for l in range(3): # noqa: E741
densities[l] += \
C(k, l, m, j)*normal[m]*sigma[j]*source[k]
if k == l:
densities[3] += \
C(k, l, m, j)*normal[m]*sigma[j]
densities[3] += stokeslet_weight * source[k] \
* stokeslet_density_vec_sym[k]
int_g = sym.IntG(target_kernel=kernel,
source_kernels=tuple(source_kernels),
densities=tuple(densities),
qbx_forced_limit=qbx_forced_limit)
sym_expr[i] += Q(i, int_g)

return sym_expr


class StokesletWrapperYoshida(StokesletWrapperBase):
"""Stokeslet Wrapper using Yoshida et al's method [1] which uses Laplace
derivatives.
[1] Yoshida, K. I., Nishimura, N., & Kobayashi, S. (2001). Application of
fast multipole Galerkin boundary integral equation method to elastostatic
crack problems in 3D.
International Journal for Numerical Methods in Engineering, 50(3), 525-547.
"""

def __init__(self, dim=None, mu_sym=_MU_SYM_DEFAULT, nu_sym=0.5):
self.dim = dim
if dim != 3:
raise ValueError("unsupported dimension given to "
"StokesletWrapperYoshida")
self.kernel = LaplaceKernel(dim=3)
self.mu = mu_sym
self.nu = nu_sym

def apply(self, density_vec_sym, qbx_forced_limit, extra_deriv_dirs=()):
stresslet = StressletWrapperYoshida(3, self.mu, self.nu)
return stresslet.apply_stokeslet_and_stresslet(density_vec_sym,
[0]*self.dim, [0]*self.dim, qbx_forced_limit, 1, 0,
extra_deriv_dirs)
Loading

0 comments on commit acc5ae0

Please sign in to comment.