-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
034b9c7
commit af147f4
Showing
6 changed files
with
349 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
|
||
### Segmentation | ||
|
||
```{r} | ||
#| code-fold: true | ||
#| warning: false | ||
#| results: hide | ||
chms <- lfa::lfa_visit_all_areas(lfa::lfa_chm) | ||
patches <- lfa::lfa_get_all_areas() | ||
patches$chm_mean = NA | ||
patches$chm_var = NA | ||
patches$chm_median = NA | ||
for (area_key in names(chms)) { | ||
area <- chms[area_key] | ||
area[[area_key]] |> as.vector() -> vec | ||
patches[patches$area == area_key, "chm_mean"] <- | ||
mean(vec, na.rm = T) | ||
patches[patches$area == area_key, "chm_var"] <- | ||
var(vec, na.rm = T) | ||
patches[patches$area == area_key, "chm_median"] <- | ||
median(vec, na.rm = T) | ||
} | ||
density <- lfa::lfa_calculate_patch_density(detections = detections) | ||
``` | ||
|
||
|
||
```{r} | ||
#| code-fold: true | ||
#| warning: false | ||
#| results: hide | ||
data <- sf::st_read("data/tree_properties.gpkg") | ||
detections <- lfa::lfa_get_detections() | ||
neighbors <- lfa::lfa_get_neighbor_paths() |> lfa::lfa_combine_sf_obj(lfa::lfa_get_all_areas()) | ||
``` | ||
|
||
|
||
```{r, cache=TRUE} | ||
#| code-fold: true | ||
#| warning: false | ||
#| results: hide | ||
combined <- sf::st_join(data,detections,join = sf::st_within) | ||
combined$Z.x = NULL | ||
names(combined)[names(combined) == 'Z.y'] <- 'Z' | ||
combined$treeID.segmentation <- NULL | ||
combined[["density"]][is.na(combined[["density"]])] <- -1 | ||
combined[["Z.mean"]][is.na(combined[["Z.mean"]])] <- -1 | ||
combined[["Z.var"]][is.na(combined[["Z.var"]])] <- -1 | ||
combined[["Intensity.mean"]][is.na(combined[["Intensity.mean"]])] <- -1 | ||
combined[["Intensity.var"]][is.na(combined[["Intensity.var"]])] <- -1 | ||
combined[["number_of_returns"]][is.na(combined[["number_of_returns"]])] <- -1 | ||
combined[["tree_area"]][is.na(combined[["tree_area"]])] <- -1 | ||
neighbors$treeID = NULL | ||
neighbors$Z = NULL | ||
neighbors$area = NULL | ||
neighbors$specie = NULL | ||
combined = sf::st_join(combined, neighbors, sf::st_within) | ||
combined = dplyr::left_join(combined,patches, c("specie","area")) | ||
density <- density |> as.data.frame() | ||
density$id = NULL | ||
density$geometry = NULL | ||
density$area_size = NULL | ||
density$detections = NULL | ||
colnames(density) = c("specie","area","density") | ||
combined <- dplyr::left_join(combined, density, c("specie","area")) | ||
excluded_cols <- c("Z.x", "treeID.detection","treeID.segmentation","name_las_file","treeID","area","specie","geom") | ||
``` | ||
|
||
|
||
|
||
```{r, cache=TRUE} | ||
#| code-fold: true | ||
#| warning: false | ||
#| results: hide | ||
data <- lfa::lfa_random_forest(tree_data = combined, excluded_input_columns = excluded_cols,response_variable = "specie") | ||
``` | ||
|
||
```{r} | ||
#| code-fold: true | ||
#| warning: false | ||
#| fig-cap: Confusion Matrix of randomForest with all parameters derived from tree level. | ||
#| label: fig-cm-tree-level | ||
cm <- data$confusion_matrix |> caret::confusionMatrix() | ||
lfa::lfa_plot_confusion_matrix(cm) | ||
``` | ||
|
||
```{r} | ||
#| code-fold: true | ||
#| warning: false | ||
#| fig-cap: Precsion and Recall of randomForest with all parameters derived from tree level. | ||
#| label: fig-pr-tree-level | ||
data$confusion_matrix |> lfa::lfa_calculate_rf_metrics() |> lfa::lfa_visualize_rf_metrics() | ||
``` | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
## Predicting species with random forest | ||
|
||
### Use height | ||
|
||
```{r} | ||
detections <- lfa::lfa_get_detections() | ||
density <- lfa::lfa_calculate_patch_density(detections = detections) | ||
colnames(density) <- c("id","specie","area","geometry","area_size","detections","density") | ||
detections <- dplyr::left_join(detections,density |> as.data.frame(), by= c("area","specie")) | ||
excluded_cols <- c("treeID","geom","area","specie","id","geometry","area_size","detections", "density") | ||
``` | ||
|
||
```{r, cache=TRUE} | ||
data <- lfa::lfa_random_forest(tree_data = detections, excluded_input_columns = excluded_cols) | ||
``` | ||
|
||
```{r} | ||
cm <- data$confusion_matrix |> caret::confusionMatrix() | ||
lfa::lfa_plot_confusion_matrix(cm) | ||
``` | ||
|
||
```{r} | ||
data$confusion_matrix |> lfa::lfa_calculate_rf_metrics() |> lfa::lfa_visualize_rf_metrics() | ||
``` | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,39 @@ | ||
|
||
### Use neighbors and height | ||
|
||
```{r} | ||
#| code-fold: true | ||
#| warning: false | ||
#| results: hide | ||
detections <- lfa::lfa_get_detections() | ||
neighbors <- lfa::lfa_get_neighbor_paths() |> lfa::lfa_combine_sf_obj(lfa::lfa_get_all_areas()) | ||
neighbors <- sf::st_join(neighbors,detections, join = sf::st_within) | ||
names(neighbors)[names(neighbors) == 'specie.x'] <- 'specie' | ||
names(neighbors)[names(neighbors) == 'area.x'] <- 'area' | ||
excluded_cols <- c("area.x","specie.x","treeID.y","Z.y","area.y","specie.y","geom","treeID.x","Z.x") | ||
``` | ||
|
||
```{r, cache=TRUE} | ||
#| code-fold: true | ||
#| warning: false | ||
#| results: hide | ||
data <- lfa::lfa_random_forest(tree_data = neighbors, excluded_input_columns = excluded_cols,response_variable = "specie") | ||
``` | ||
|
||
```{r} | ||
#| code-fold: true | ||
#| warning: false | ||
#| label: fig-cm-neighbors | ||
#| fig-cap: Confusion Matrix of randomForest on the distance to 100 nearest neighbors. | ||
cm <- data$confusion_matrix |> caret::confusionMatrix() | ||
lfa::lfa_plot_confusion_matrix(cm) | ||
``` | ||
|
||
```{r} | ||
#| code-fold: true | ||
#| warning: false | ||
#| label: fig-pr-neighbors | ||
#| fig-cap: Class wise precision and recall for randomForest-Classification with distance to the 100 nearest neighbors. | ||
data$confusion_matrix |> lfa::lfa_calculate_rf_metrics() |> lfa::lfa_visualize_rf_metrics() | ||
``` | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
|
||
### Train with patch level information | ||
|
||
```{r} | ||
#| code-fold: true | ||
#| warning: false | ||
#| results: hide | ||
chms <- lfa::lfa_visit_all_areas(lfa::lfa_chm) | ||
patches <- lfa::lfa_get_all_areas() | ||
patches$chm_mean = NA | ||
patches$chm_var = NA | ||
patches$chm_median = NA | ||
for (area_key in names(chms)) { | ||
area <- chms[area_key] | ||
area[[area_key]] |> as.vector() -> vec | ||
patches[patches$area == area_key, "chm_mean"] <- | ||
mean(vec, na.rm = T) | ||
patches[patches$area == area_key, "chm_var"] <- | ||
var(vec, na.rm = T) | ||
patches[patches$area == area_key, "chm_median"] <- | ||
median(vec, na.rm = T) | ||
} | ||
``` | ||
|
||
```{r} | ||
#| code-fold: true | ||
#| warning: false | ||
#| results: hide | ||
neighbors <- lfa::lfa_get_neighbor_paths() |> lfa::lfa_combine_sf_obj(lfa::lfa_get_all_areas()) | ||
``` | ||
|
||
|
||
```{r} | ||
#| code-fold: true | ||
#| warning: false | ||
#| results: hide | ||
detections <- lfa::lfa_get_detections() | ||
density <- lfa::lfa_calculate_patch_density(detections = detections) | ||
colnames(density) <- c("id","specie","area","geometry","area_size","detections","density") | ||
detections <- dplyr::left_join(detections,density |> as.data.frame(),by=c("area","specie")) | ||
detections <- dplyr::left_join(detections,patches, by = c("area","specie")) | ||
detections <- sf::st_join(detections, neighbors, join = sf::st_within) | ||
detections$treeID.x = NULL | ||
names(detections)[names(detections) == 'treeID.y'] <- 'treeID' | ||
detections$Z.x = NULL | ||
names(detections)[names(detections) == 'Z.y'] <- 'Z' | ||
detections$area.x = NULL | ||
names(detections)[names(detections) == 'area.y'] <- 'area' | ||
detections$specie.x = NULL | ||
names(detections)[names(detections) == 'specie.y'] <- 'specie' | ||
excluded_cols = c("treeID","geom","area","specie","id","geometry","area_size","detections","geometry") | ||
``` | ||
|
||
```{r, cache=TRUE} | ||
#| code-fold: true | ||
#| warning: false | ||
#| results: hide | ||
data <- lfa::lfa_random_forest(tree_data = detections, excluded_input_columns = excluded_cols,response_variable = "specie") | ||
``` | ||
|
||
```{r} | ||
#| code-fold: true | ||
#| warning: false | ||
#| label: fig-cm-patch | ||
#| fig-cap: Confusion Matrix of randomForest on returns per Tree. | ||
cm <- data$confusion_matrix |> caret::confusionMatrix() | ||
lfa::lfa_plot_confusion_matrix(cm) | ||
``` | ||
|
||
```{r} | ||
#| code-fold: true | ||
#| warning: false | ||
#| label: fig-pr-patch | ||
#| fig-cap: Class wise precision and recall for randomForest-Classification with LiDAR returns per tree. | ||
data$confusion_matrix |> lfa::lfa_calculate_rf_metrics() |> lfa::lfa_visualize_rf_metrics() | ||
``` | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,35 @@ | ||
|
||
### LiDAR point cloud returns per Tree | ||
|
||
```{r} | ||
#| code-fold: true | ||
#| warning: false | ||
#| results: hide | ||
returns <- lfa::lfa_count_returns_all_areas() | ||
excluded_cols = c("Var1","specie","area") | ||
``` | ||
|
||
```{r, cache=TRUE} | ||
#| code-fold: true | ||
#| warning: false | ||
#| results: hide | ||
data <- lfa::lfa_random_forest(tree_data = returns, excluded_input_columns = excluded_cols,response_variable = "specie") | ||
``` | ||
|
||
```{r} | ||
#| code-fold: true | ||
#| warning: false | ||
#| label: fig-cm-returns | ||
#| fig-cap: Confusion Matrix of randomForest on returns per Tree. | ||
cm <- data$confusion_matrix |> caret::confusionMatrix() | ||
lfa::lfa_plot_confusion_matrix(cm) | ||
``` | ||
|
||
```{r} | ||
#| code-fold: true | ||
#| warning: false | ||
#| label: fig-pr-returns | ||
#| fig-cap: Class wise precision and recall for randomForest-Classification with LiDAR returns per tree. | ||
data$confusion_matrix |> lfa::lfa_calculate_rf_metrics() |> lfa::lfa_visualize_rf_metrics() | ||
``` | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
|
||
### Segmentation | ||
|
||
```{r} | ||
#| code-fold: true | ||
#| warning: false | ||
#| results: hide | ||
data <- sf::st_read("data/tree_properties.gpkg") | ||
detections <- lfa::lfa_get_detections() | ||
neighbors <- lfa::lfa_get_neighbor_paths() |> lfa::lfa_combine_sf_obj(lfa::lfa_get_all_areas()) | ||
``` | ||
```{r} | ||
#| code-fold: true | ||
#| warning: false | ||
#| results: hide | ||
combined <- sf::st_join(data,detections,join = sf::st_within) | ||
combined$Z.x = NULL | ||
names(combined)[names(combined) == 'Z.y'] <- 'Z' | ||
combined$treeID.segmentation <- NULL | ||
combined[["density"]][is.na(combined[["density"]])] <- -1 | ||
combined[["Z.mean"]][is.na(combined[["Z.mean"]])] <- -1 | ||
combined[["Z.var"]][is.na(combined[["Z.var"]])] <- -1 | ||
combined[["Intensity.mean"]][is.na(combined[["Intensity.mean"]])] <- -1 | ||
combined[["Intensity.var"]][is.na(combined[["Intensity.var"]])] <- -1 | ||
combined[["number_of_returns"]][is.na(combined[["number_of_returns"]])] <- -1 | ||
combined[["tree_area"]][is.na(combined[["tree_area"]])] <- -1 | ||
neighbors$treeID = NULL | ||
neighbors$Z = NULL | ||
neighbors$area = NULL | ||
neighbors$specie = NULL | ||
combined = sf::st_join(combined, neighbors, sf::st_within) | ||
excluded_cols <- c("Z.x", "treeID.detection","treeID.segmentation","name_las_file","treeID","area","specie","geom") | ||
``` | ||
|
||
```{r, cache=TRUE} | ||
#| code-fold: true | ||
#| warning: false | ||
#| results: hide | ||
data <- lfa::lfa_random_forest(tree_data = combined, excluded_input_columns = excluded_cols,response_variable = "specie") | ||
``` | ||
|
||
```{r} | ||
#| code-fold: true | ||
#| warning: false | ||
#| fig-cap: Confusion Matrix of randomForest with all parameters derived from tree level. | ||
#| label: fig-cm-tree-level | ||
cm <- data$confusion_matrix |> caret::confusionMatrix() | ||
lfa::lfa_plot_confusion_matrix(cm) | ||
``` | ||
|
||
```{r} | ||
#| code-fold: true | ||
#| warning: false | ||
#| fig-cap: Precsion and Recall of randomForest with all parameters derived from tree level. | ||
#| label: fig-pr-tree-level | ||
data$confusion_matrix |> lfa::lfa_calculate_rf_metrics() |> lfa::lfa_visualize_rf_metrics() | ||
``` | ||
|