Skip to content

joy717/dcu-vgpu-device-plugin

 
 

Repository files navigation

DCU vGPU device plugin for HAMi

Introduction

This is a [Kubernetes][k8s] [device plugin][dp] implementation that enables the registration of hygon DCU in a container cluster for compute workload. With the approrpriate hardware and this plugin deployed in your Kubernetes cluster, you will be able to run jobs that require AMD DCU. It supports DCU-virtualzation by using hy-virtual provided by dtk

Architect

The flow of vDCU job is as follows:

Prerequisites

  • dtk >= 24.04
  • hy=smi == v1.6.0

Limitations

  • This plugin targets Kubernetes v1.18+.

Deployment

Prepare

# on the dcu node, create these directory:
$ mkdir /etc/vdev
# should change dtk-xx.xx.x to your installed dtk version
$ cp -r /opt/dtk-xx.xx.x /opt/dtk
$ kubectl apply -f k8s-dcu-rbac.yaml
$ kubectl apply -f k8s-dcu-plugin.yaml
# replace NODE_NAME with your dcu node name
$ kubectl label node NODE_NAME dcu=on

Build

docker build .

Examples

apiVersion: v1
kind: Pod
metadata:
  name: alexnet-tf-gpu-pod-mem
  labels:
    purpose: demo-tf-amdgpu
spec:
  containers:
    - name: alexnet-tf-gpu-container
      image: ubuntu:20.04
      workingDir: /root
      command: ["sleep","infinity"]
      resources:
        limits:
          hygon.com/dcunum: 1 # requesting a GPU
          hygon.com/dcumem: 2000 # each dcu require 2000 MiB device memory
          hygon.com/dcucores: 15 # each dcu use 60% of total compute cores

Validation

Inside container, use hy-virtual to validate

source /opt/hygondriver/env.sh
hy-virtual -show-device-info

There will be output like these:

Device 0:
	Actual Device: 0
	Compute units: 9
	Global memory: 2097152000 bytes

Maintainer

[email protected]

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Go 90.7%
  • Shell 3.7%
  • Dockerfile 3.6%
  • Smarty 2.0%