Skip to content

juliantang324/NexusSplats

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NexusSplats: Efficient 3D Gaussian Splatting in the Wild

Yuzhou Tang · Dejun Xu · Yongjie Hou · Zhenzhong Wang · Min Jiang*

Xiamen University


NexusSplats model appearance


News

[2024.11.25] 🎈 We have released the codebase for NexusSplats.

TODO List

  • Codebase release
  • Pretrained models
  • Merge with the latest version of NerfBaselines

Abstract

We propose a nexus kernel-driven approach, called NexusSplats, for efficient and finer 3D scene reconstruction under complex lighting and occlusion conditions. Experimental results demonstrate that NexusSplats achieves state-of-the-art rendering quality and reduces reconstruction time in different scenes by up to 70.4% compared to the current best method in quality.

overview of NexusSplats

Overview of NexusSplats. Left: From the reference image, we extract light embedding and transient embedding to capture global lighting and occlusion conditions. Middle: Our nexus kernels enable hierarchical management of Gaussian primitives, allowing efficient local adaptations to different lighting and occlusion conditions via the light decoupling module and the uncertainty splatting module. Right: Through tile rasterization, we project raw colors, mapped colors, and uncertainties onto 2D visible planes. A boundary penalty finally refines the filtering mask in handling occlusions.

Installation

Clone the repository and create a python == 3.11 Anaconda environment with CUDA toolkit 11.8. Our code is implemented based on NerfBaselines. Install the dependencies and the codebase:

git clone [email protected]:juliantang324/NexusSplats.git
cd NexusSplats

conda create -y -n ns python=3.11
conda activate ns
conda env config vars set NERFBASELINES_BACKEND=python
pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu118
pip install --upgrade pip
pip install -r requirements.txt
pip install nerfbaselines==1.2.5
pip install -e ./submodules/diff-gaussian-rasterization ./submodules/simple-knn
pip install -e .

Training

To start the training on the Photo Tourism dataset, run one of following commands:

ns train --data external://phototourism/trevi-fountain
ns train --data external://phototourism/sacre-coeur
ns train --data external://phototourism/brandenburg-gate

Evaluation

To evaluate the trained model on the Photo Tourism dataset, run the following commands:

# render predictions
ns render --checkpoint {checkpoint} --data external://phototourism/trevi-fountain --output {output_path}
ns render --checkpoint {checkpoint} --data external://phototourism/sacre-coeur --output {output_path}
ns render --checkpoint {checkpoint} --data external://phototourism/brandenburg-gate --output {output_path}

# evaluate predictions
ns evaluate {path/to/predictions} --output results.json

Interactive Viewer

To start the viewer and explore the trained models, run one of the following commands:

ns viewer --checkpoint {checkpoint} --data external://phototourism/trevi-fountain
ns viewer --checkpoint {checkpoint} --data external://phototourism/sacre-coeur
ns viewer --checkpoint {checkpoint} --data external://phototourism/brandenburg-gate

Concurrent works

There are several concurrent works that also aim to extend 3DGS to handle in-the-wild scenarios:

Acknowledgements

We sincerely appreciate the authors of 3DGS and NerfBaselines for their great work and released code. Please follow their licenses when using our code.

Citation

If you find our code or paper useful, please star this repository and cite:

@article{tang2024nexussplats,
    title={NexusSplats: Efficient 3D Gaussian Splatting in the Wild},
    author={Tang, Yuzhou and Xu, Dejun and Hou, Yongjie and Wang, Zhenzhong and Jiang, Min},
    journal={arXiv preprint arXiv:2411.14514},
    year={2024}
}