This package provides tools for standardized and reproducible comparison of synthetic generator models on real-world data and use cases. Both datasets and metrics were developed for and vetted through the NIST PSCR Differential Privacy Temporal Map Challenge.
You have two possible workflows:
- manually manage the public and private datasets as
pandas.DataFrame
objects, directy generate your synthetic data and directly compute the score - reproduce the setup of the challenge, i.e create a synthetizer subclass of
challenge.submission.Model
then callrun(model, challenge="census")
. This makes sure your synthetizer is scored against the same datasets as in the challenge.
In all cases, the scoring does not numerically check whether your synthesizer is actually
Requirements: Python >=3.6
The SDNist source code is hosted on Github and all the data tables will be downloaded from the SDNist Github Releases. Alternatively, the data can be manually downloaded as part of the latest release SDNist Release 1.2.0
- Data Download Notes:
- SDNist does not just download specific dataset instead it downloads all the available datasets that are provided by the library.
- If data is manually downloaded, copy the contents inside the 'data' directory from the extracted zip file to your data root directory.
- Default root data directory of SDNist is
<your-current-working-directory>/data
. Current working directory is the directory in which the user runs SDNist library through console/terminal, or the directory that contains your python or ipython files that imports SDNist library.
- Install via
pip
from PyPi directory:
pip install sdnist
- Install
sdnist
Python module through git repository:
git clone https://github.com/usnistgov/SDNist && cd SDNist
pip install .
- Install
sdnist
Python module through git in a virtual environment:
MAC OS / Linux
git clone https://github.com/usnistgov/SDNist && cd SDNist
python3 -m venv venv
. venv/bin/activate
pip install .
Windows
git clone https://github.com/usnistgov/SDNist && cd SDNist
python3 -m venv venv
. venv/Scripts/activate
pip install .
This repository is being actively developed, and we welcome contributions.
If you encounter a bug, please create an issue.
Please feel free to create a Pull Request to help us correct bugs and other issues.
Please contact us if you wish to augment or expand existing features.
>>> import sdnist
>>> dataset, schema = sdnist.census() # Retrieve public dataset
>>> dataset.head()
PUMA YEAR HHWT GQ ... POVERTY DEPARTS ARRIVES sim_individual_id
0 17-1001 2012 88.0 1 ... 118 902 909 12
1 17-1001 2012 61.0 1 ... 262 732 744 33
2 17-1001 2012 54.0 1 ... 118 642 654 401
3 17-1001 2012 106.0 1 ... 262 0 0 470
4 17-1001 2012 31.0 1 ... 501 0 0 702
[5 rows x 36 columns]
>>> synthetic_dataset = dataset.sample(n=20000) # Build a fake synthetic dataset
# Compute the score of the synthetic dataset
>>> sdnist.score(dataset, synthetic_dataset, schema, challenge="census")
100%|███████████████████████████████████████████| 50/50 [00:04<00:00, 12.11it/s]
CensusKMarginalScore(847)
Many synthesizers require working on categorical/discretized data, yet many features of in sdnist
datasets are actually
integer or floating point valued. sdnist
provide a simple tool to discretize/undiscretize sdnist
datasets.
First, note that the k-marginal score itself works on categorical data under the hood. For fairness, the bins that are used can be considered public. They are available at
>>> bins = sdnist.kmarginal.CensusKMarginalScore.BINS
for the ACS (American Community Survey) dataset or
>>> bins = sdnist.kmarginal.TaxiKmarginalScore.BINS
for the Chicago taxi dataset.
The pd.DataFrame
datasets can then be discretized using
>>> dataset_binned = sdnist.utils.discretize(dataset, schema, bins)
sdnist.utils.discretize
returns a pd.DataFrame
where each value is remapped to (0, n-1)
where n
is the number of distinct values. Note that the even though the score
functions should be given unbinned datasets, i.e if your synthesizer works on discretized dataset, you should first undiscretize your synthetic data. This can be done using
>>> synthetic_dataset_binned = ... # generate your synthetic data using your own method
>>> synthetic_dataset = sdnist.utils.undo_discretize(synthetic_dataset_binned, schema, bins)
You can directly run from a terminal
% python -m sdnist your_file.csv
This will score against the public census (ACS) dataset and display the result in an HTML page:
To score the synthetic dataset against one of the test datasets
% python -m sdnist your_synthetic_ga_nc_sc.csv --test-dataset GA_NC_SC_10Y_PUMS
Other options are available by calling --help
.
2) Reproducing the baselines from the challenge by sublasscing challenge.submission.Model
(option 2, slightly more advanced and time-consuming)
Some examples of subclassing challenge.submission.Model
are available in the library.
Build a synthetic dataset by randomly subsampling 10% of the private dataset:
python -m sdnist.challenge.subsample
Output :
python -m sdnist.challenge.subsample
2021-11-23 14:55:07.889 | INFO | sdnist.challenge.submission:run:66 - Skipping scoring for eps=0.1.
2021-11-23 14:55:07.889 | INFO | sdnist.challenge.submission:run:73 - Resuming scoring from results/census/eps=1.csv.
2021-11-23 14:55:08.007 | INFO | sdnist.challenge.submission:run:88 - Computing scores for eps=1.
100%|███████████████████████████████████████████| 50/50 [00:05<00:00, 9.37it/s]
2021-11-23 14:55:14.969 | SUCCESS | sdnist.challenge.submission:run:92 - eps=1score=842.68
2021-11-23 14:55:14.985 | INFO | sdnist.challenge.submission:run:79 - Generating synthetic data for eps=10.
2021-11-23 14:55:15.565 | INFO | sdnist.challenge.submission:run:85 - (saved to results/census/eps=10.csv)
2021-11-23 14:55:15.565 | INFO | sdnist.challenge.submission:run:88 - Computing scores for eps=10.
100%|███████████████████████████████████████████| 50/50 [00:05<00:00, 9.39it/s]
2021-11-23 14:55:22.530 | SUCCESS | sdnist.challenge.submission:run:92 - eps=1score=842.42
Note that the resulting synthetic dataset is not differentillally private.
Build a synthetic dataset by chosing random valid values:
python -m sdnist.challenge.baseline
This corresponds to the baseline of the sprint 2 or the 2020 challenge. The output can be considered 0-differentially private if the schema itself is public.
Output:
2021-11-23 14:59:58.975 | INFO | sdnist.challenge.submission:run:79 - Generating synthetic data for eps=0.1.
Generation: 100%|█████████████████████████████████| 20000/20000 [00:32<00:00, 608.57it/s]
2021-11-23 15:00:31.939 | INFO | sdnist.challenge.submission:run:85 - (saved to results/census/eps=0.1.csv)
2021-11-23 15:00:31.939 | INFO | sdnist.challenge.submission:run:88 - Computing scores for eps=0.1.
100%|████████████████████████████████████████████████████| 50/50 [00:05<00:00, 9.64it/s]
2021-11-23 15:00:38.664 | SUCCESS | sdnist.challenge.submission:run:92 - eps=0.1 score=186.73
2021-11-23 15:00:38.682 | INFO | sdnist.challenge.submission:run:79 - Generating synthetic data for eps=1.
Generation: 100%|█████████████████████████████████| 20000/20000 [00:34<00:00, 584.78it/s]
2021-11-23 15:01:12.962 | INFO | sdnist.challenge.submission:run:85 - (saved to results/census/eps=1.csv)
2021-11-23 15:01:12.962 | INFO | sdnist.challenge.submission:run:88 - Computing scores for eps=1.
100%|████████████████████████████████████████████████████████████████| 50/50 [00:05<00:00, 9.50it/s]
2021-11-23 15:01:19.818 | SUCCESS | sdnist.challenge.submission:run:92 - eps=1 score=187.32
2021-11-23 15:01:19.835 | INFO | sdnist.challenge.submission:run:79 - Generating synthetic data for eps=10.
Generation: 100%|█████████████████████████████████████████████| 20000/20000 [00:33<00:00, 596.94it/s]
2021-11-23 15:01:53.417 | INFO | sdnist.challenge.submission:run:85 - (saved to results/census/eps=10.csv)
2021-11-23 15:01:53.417 | INFO | sdnist.challenge.submission:run:88 - Computing scores for eps=10.
100%|████████████████████████████████████████████████████████████████| 50/50 [00:05<00:00, 9.94it/s]
2021-11-23 15:02:00.076 | SUCCESS | sdnist.challenge.submission:run:92 - eps=10 score=186.73
Other examples are available in the examples/
folder. The DPSyn and Minutemen are directly adapted from the public repo of their author:
- DPSyn : https://github.com/agl-c/deid2_dpsyn
- Minutemen : https://github.com/ryan112358/nist-synthetic-data-2021. This examples requires the
private-pgm
library (https://github.com/ryan112358/private-pgm)