Skip to content

Commit

Permalink
chore(components): Sync AutoML components
Browse files Browse the repository at this point in the history
PiperOrigin-RevId: 597743182
  • Loading branch information
TheMichaelHu authored and Google Cloud Pipeline Components maintainers committed Jan 12, 2024
1 parent a79b36c commit 1cc31bb
Show file tree
Hide file tree
Showing 39 changed files with 396 additions and 401 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,7 @@ def automl_forecasting_ensemble(
# fmt: on
job_id = dsl.PIPELINE_JOB_ID_PLACEHOLDER
task_id = dsl.PIPELINE_TASK_ID_PLACEHOLDER
image_uri = 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20231029_0125'
image_uri = 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240108_1325'
display_name = f'automl-forecasting-ensemble-{job_id}-{task_id}'

error_file_path = f'{root_dir}/{job_id}/{task_id}/error.pb'
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -99,14 +99,14 @@ def automl_forecasting_stage_1_tuner(
' 1, "machine_spec": {"machine_type": "n1-standard-8"},'
' "container_spec": {"image_uri":"'
),
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20231029_0125',
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240108_1325',
'", "args": ["forecasting_mp_l2l_stage_1_tuner',
'", "--region=',
location,
'", "--transform_output_path=',
transform_output.uri,
'", "--training_docker_uri=',
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20231029_0125',
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240108_1325',
'", "--reduce_search_space_mode=',
reduce_search_space_mode,
f'", "--component_id={dsl.PIPELINE_TASK_ID_PLACEHOLDER}',
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -97,14 +97,14 @@ def automl_forecasting_stage_2_tuner(
' 1, "machine_spec": {"machine_type": "n1-standard-8"},'
' "container_spec": {"image_uri":"'
),
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20231029_0125',
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240108_1325',
'", "args": ["forecasting_mp_l2l_stage_2_tuner',
'", "--region=',
location,
'", "--transform_output_path=',
transform_output.uri,
'", "--training_docker_uri=',
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20231029_0125',
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240108_1325',
f'", "--component_id={dsl.PIPELINE_TASK_ID_PLACEHOLDER}',
'", "--training_base_dir=',
root_dir,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -5806,7 +5806,7 @@ deploymentSpec:
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20231029_0125",
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240108_1325",
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
Expand Down Expand Up @@ -5840,7 +5840,7 @@ deploymentSpec:
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20231029_0125",
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240108_1325",
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
Expand Down Expand Up @@ -5875,11 +5875,11 @@ deploymentSpec:
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20231029_0125",
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240108_1325",
"\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20231029_0125",
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240108_1325",
"\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
Expand Down Expand Up @@ -5918,11 +5918,11 @@ deploymentSpec:
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20231029_0125",
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240108_1325",
"\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20231029_0125",
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240108_1325",
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
"\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
Expand Down Expand Up @@ -5961,7 +5961,7 @@ deploymentSpec:
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20231029_0125", "\",
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240108_1325", "\",
\"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
Expand Down Expand Up @@ -6285,8 +6285,8 @@ deploymentSpec:
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
- '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
- '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20231029_0125
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20231029_0125
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240108_1325
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240108_1325
- '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
- '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
- '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
Expand All @@ -6303,7 +6303,7 @@ deploymentSpec:
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
- '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20231029_0125
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240108_1325
resources:
cpuLimit: 8.0
memoryLimit: 30.0
Expand Down Expand Up @@ -6473,10 +6473,10 @@ deploymentSpec:
Returns the prediction image corresponding to the given model type.\"\"\"\
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
\ must be hardcoded without any breaks in the code so string\n # replacement\
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20231029_0125',\n\
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20231029_0125',\n\
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20231029_0125',\n\
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20231029_0125',\n\
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240108_1325',\n\
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240108_1325',\n\
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240108_1325',\n\
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240108_1325',\n\
\ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
\ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
\ )\n return images[model_type]\n\n"
Expand Down Expand Up @@ -6509,10 +6509,10 @@ deploymentSpec:
Returns the prediction image corresponding to the given model type.\"\"\"\
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
\ must be hardcoded without any breaks in the code so string\n # replacement\
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20231029_0125',\n\
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20231029_0125',\n\
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20231029_0125',\n\
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20231029_0125',\n\
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240108_1325',\n\
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240108_1325',\n\
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240108_1325',\n\
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240108_1325',\n\
\ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
\ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
\ )\n return images[model_type]\n\n"
Expand Down Expand Up @@ -6545,7 +6545,7 @@ deploymentSpec:
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
\ return f'predicted_{target_column}.value'\n\n"
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20231029_0125
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240108_1325
exec-get-predictions-column-2:
container:
args:
Expand Down Expand Up @@ -6574,7 +6574,7 @@ deploymentSpec:
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
\ return f'predicted_{target_column}.value'\n\n"
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20231029_0125
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240108_1325
exec-importer:
importer:
artifactUri:
Expand Down Expand Up @@ -7020,7 +7020,7 @@ deploymentSpec:
- -u
- -m
- launcher
image: gcr.io/ml-pipeline/automl-tables-private:1.0.15
image: gcr.io/ml-pipeline/automl-tables-private:1.0.17
exec-model-upload-2:
container:
args:
Expand Down Expand Up @@ -7049,7 +7049,7 @@ deploymentSpec:
- -u
- -m
- launcher
image: gcr.io/ml-pipeline/automl-tables-private:1.0.15
image: gcr.io/ml-pipeline/automl-tables-private:1.0.17
exec-set-optional-inputs:
container:
args:
Expand Down Expand Up @@ -7112,7 +7112,7 @@ deploymentSpec:
\ 'model_display_name',\n 'transformations',\n ],\n\
\ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
\ model_display_name,\n transformations,\n )\n\n"
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20231029_0125
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240108_1325
exec-split-materialized-data:
container:
args:
Expand Down Expand Up @@ -7158,7 +7158,7 @@ deploymentSpec:
\ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
\ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
\ 'w') as f:\n f.write(file_patterns[2])\n\n"
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20231029_0125
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240108_1325
exec-string-not-empty:
container:
args:
Expand Down Expand Up @@ -7224,7 +7224,7 @@ deploymentSpec:
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20231029_0125
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240108_1325
exec-table-to-uri-2:
container:
args:
Expand Down Expand Up @@ -7260,7 +7260,7 @@ deploymentSpec:
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20231029_0125
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240108_1325
exec-training-configurator-and-validator:
container:
args:
Expand Down Expand Up @@ -7305,7 +7305,7 @@ deploymentSpec:
["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20231029_0125
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240108_1325
pipelineInfo:
description: The AutoML Forecasting pipeline.
name: learn-to-learn-forecasting
Expand Down
Loading

0 comments on commit 1cc31bb

Please sign in to comment.