Skip to content
This repository has been archived by the owner on Jul 24, 2024. It is now read-only.

feat(tactic/expand_exists): create in namespace & docstring #15732

Open
wants to merge 6 commits into
base: master
Choose a base branch
from
106 changes: 80 additions & 26 deletions src/tactic/expand_exists.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ian Wood
-/
import meta.expr
import tactic.core

/-!
# `expand_exists`
Expand All @@ -27,20 +28,42 @@ lemma it_spec (n : ℕ) : n < it n := classical.some_spec (it_exists n)
-/

namespace tactic
setup_tactic_parser

open expr

namespace expand_exists

@[derive has_reflect]
meta structure arg :=
(is_root : bool)
(name : name)
(docstring : option string)

meta def parse_docstring : parser $ (option string) :=
do
pe <- parser.pexpr,
e <- to_expr pe,
val <- some <$> eval_expr string e,
return val

meta def parse_arg : parser arg :=
do
is_root <- option.is_some <$> (tk "@")?,
name <- ident,
is_docstring <- option.is_some <$> (tk "=")?,
doc <- if is_docstring then parse_docstring else pure none,
return ⟨is_root, name, doc⟩

/--
Data known when parsing pi expressions.

`decl`'s arguments are: is_theorem, name, type, value.
`decl`'s arguments are: is_theorem, arg, type, value.
-/
meta structure parse_ctx :=
(original_decl : declaration)
(decl : bool → name → expr → pexpr → tactic unit)
(names : list name)
(decl : bool → arg → expr → pexpr → tactic name)
(args : list arg)
(pis_depth : ℕ := 0)

/--
Expand Down Expand Up @@ -86,26 +109,27 @@ meta def parse_one_prop (ctx : parse_ctx_props) (p : expr) : tactic unit :=
do
let p : expr := instantiate_exists_decls { ..ctx } p,
let val : pexpr := ctx.project_proof ctx.spec_chain,
n <- match ctx.names with
| [n] := return n
a <- match ctx.args with
| [a] := return a
| [] := fail "missing name for proposition"
| _ := fail "too many names for propositions (are you missing an and?)"
end,
ctx.decl true n p val
ctx.decl true a p val,
skip

/--
Parses a proposition and decides if it should be broken down (eg `P ∧ Q` -> `P` and `Q`) depending
on how many `names` are left. Then creates the associated specification proof(s).
on how many `args` are left. Then creates the associated specification proof(s).
-/
meta def parse_props : parse_ctx_props → expr → tactic unit
| ctx (app (app (const "and" []) p) q) := do
match ctx.names with
| [n] := parse_one_prop ctx (app (app (const `and []) p) q)
| (n :: tail) :=
parse_one_prop { names := [n],
match ctx.args with
| [a] := parse_one_prop ctx (app (app (const `and []) p) q)
| (a :: tail) :=
parse_one_prop { args := [a],
project_proof := (λ p, (const `and.left []) p) ∘ ctx.project_proof,
..ctx } p
>> parse_props { names := tail,
>> parse_props { args := tail,
project_proof := (λ p, (const `and.right []) p) ∘ ctx.project_proof,
..ctx } q
| [] := fail "missing name for proposition"
Expand All @@ -120,18 +144,18 @@ meta def parse_exists : parse_ctx_exists → expr → tactic unit
| ctx (app (app (const "Exists" [lvl]) type) (lam var_name bi var_type body)) := do
/- TODO: Is this needed, and/or does this create issues? -/
(if type = var_type then tactic.skip else tactic.fail "exists types should be equal"),
n, names⟩ <- match ctx.names with
| (n :: tail) := return (n, tail)
a, args⟩ <- match ctx.args with
| (a :: tail) := return (a, tail)
| [] := fail "missing name for exists"
end,
-- Type may be dependant on earlier arguments.
let type := instantiate_exists_decls ctx type,
let value : pexpr := (const `classical.some [lvl]) ctx.spec_chain,
ctx.decl false n type value,
decl_name <- ctx.decl false a type value,

let exists_decls := ctx.exists_decls.concat n,
let exists_decls := ctx.exists_decls.concat decl_name,
let some_spec : pexpr := (const `classical.some_spec [lvl]) ctx.spec_chain,
let ctx : parse_ctx_exists := { names := names,
let ctx : parse_ctx_exists := { args := args,
spec_chain := some_spec,
exists_decls := exists_decls,
..ctx },
Expand All @@ -144,8 +168,8 @@ Parses a `∀ (a : α), p a`. If `p` is not a pi expression, it will call `parse
meta def parse_pis : parse_ctx → expr → tactic unit
| ctx (pi n bi ty body) :=
-- When making a declaration, wrap in an equivalent pi expression.
let decl := (λ is_theorem name type val,
ctx.decl is_theorem name (pi n bi ty type) (lam n bi (to_pexpr ty) val)) in
let decl := (λ is_theorem arg type val,
ctx.decl is_theorem arg (pi n bi ty type) (lam n bi (to_pexpr ty) val)) in
parse_pis { decl := decl, pis_depth := ctx.pis_depth + 1, ..ctx } body
| ctx (app (app (const "Exists" [lvl]) type) p) :=
let with_args := (λ (e : expr),
Expand Down Expand Up @@ -195,22 +219,52 @@ Note that without the last argument `nat_greater_nonzero`, `nat_greater_lt` woul
```lean
#check nat_greater_lt -- nat_greater_lt : ∀ (n : ℕ), n < nat_greater n ∧ nat_greater n ≠ 0
```

All definitions will be created in the same namespace as the `exists` lemma. You can prepend the
name with `@` to create it in the root namespace:
0x182d4454fb211940 marked this conversation as resolved.
Show resolved Hide resolved

```lean
namespace foo
@[expand_exists @a b]
lemma a_exists : ∃ (a : α), a = a := ...
end foo

#check a -- α
#check foo.b -- a = a
```

A docstring can be added either using `add_decl_doc` after the lemma, or by appending `="..."` to
the name:

```lean
@[expand_exists foo="a foo with property bar" bar]
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

An alternative syntax -- but this time I'm not sure if it's better -- @[expand_exists [foo "a foo with property bar", bar]]. This should also avoid any pexpr/name ambiguity and is easy enough to parse.

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I haven't tried implementing this yet but I'm a bit torn: it seems cleaner but also slightly more verbose and less like other attribute syntaxes. I guess it would be possible to accept both but I think that just adds maintenance burden. I also imagine your proposed syntax could allow for more features more gracefully in future? Again, I'm unsure.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We definitely shouldn't support both = and lists. In favor of the list syntax: lists are already used in some attributes (@[derive [class1, class2]]), and = is not AFAIK. Against the list syntax, in the no-doc-strings case, it clashes with the syntax for e.g. simps (@[simps id1 id2 id3] vs @[expand_exists [id1, id2, id3]]).

Maybe the move is to support both the bare stream of idents (without doc strings at all) and the more verbose list style? Something like parse (ident* <|> list_of ident_with_opt_string), see https://github.com/leanprover-community/lean/blob/22b09be35ef66aece11e6e8f5d114f42b064259b/library/init/meta/interactive_base.lean#L61 .

@digama0 any preference here?

Copy link
Member

@digama0 digama0 Jul 28, 2022

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think the simplest approach would be to simply copy the docstring from the theorem to all generated declarations. That way you don't have to shove a doc string into the middle of an attribute. For lean 4, I would probably be looking at a syntax closer to

expand_exists ⟨
  /-- doc string -/ defn,
  /-- doc string -/ thm
⟩ (param : type) : type -> \exists x, p x := proof

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Perhaps it makes sense for now to use the docstring with the exists lemma by default, allow the = syntax for now to override this, and add a note stating the planned syntax for lean 4?

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Whatever choice we make here could be retrospectively applied to simps, since in principle we could want to set docstrings there too.

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@robertylewis Interestingly that worked but only the other way around (trying to parse as a list, then falling back to idents). I don't really understand what would cause this behaviour: is there some intentional design decision behind this?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@digama0 One other idea is we could have an auto-generated string saying something like "See exists_lemma" provided it has a docstring, though either approach would work. Both are quite easy to implement.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Perhaps it makes sense for now to use the docstring with the exists lemma by default, allow the = syntax for now to override this, and add a note stating the planned syntax for lean 4?

I still don't love the = syntax, but this sounds fine to me. It's not really worth quibbling over! I think this is better than

@digama0 One other idea is we could have an auto-generated string saying something like "See exists_lemma" provided it has a docstring, though either approach would work. Both are quite easy to implement.

since it's best for doc strings to be self-contained whenever possible, since they show up in hover tooltips.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@robertylewis Interestingly that worked but only the other way around (trying to parse as a list, then falling back to idents). I don't really understand what would cause this behaviour: is there some intentional design decision behind this?

I would have expected it to work either way since an ident can't start with [. Can't say why without playing around with it myself!

lemma foo_exists : ∃ (f : foo), bar f := ...

/--
the property satisfied by foo
-/
add_decl_doc bar
```
-/
@[user_attribute]
meta def expand_exists_attr : user_attribute unit (list name) :=
meta def expand_exists_attr : user_attribute unit (list expand_exists.arg) :=
{ name := "expand_exists",
descr := "From a proof that (a) value(s) exist(s) with certain properties, "
++ "constructs (an) instance(s) satisfying those properties.",
parser := lean.parser.many lean.parser.ident,
parser := expand_exists.parse_arg*,
after_set := some $ λ decl prio persistent, do
d <- get_decl decl,
names <- expand_exists_attr.get_param decl,
args <- expand_exists_attr.get_param decl,
expand_exists.parse_pis
{ original_decl := d,
decl := λ is_t n ty val, (tactic.to_expr val >>= λ val,
tactic.add_decl (if is_t then declaration.thm n d.univ_params ty (pure val)
else declaration.defn n d.univ_params ty val default tt)),
names := names } d.type }
decl := (λ is_t a ty val, do
let name := if a.is_root then a.name else d.to_name.get_prefix ++ a.name,
val <- tactic.to_expr val,
decl <- tactic.add_decl $ if is_t then declaration.thm name d.univ_params ty (pure val)
else declaration.defn name d.univ_params ty val default tt,
a.docstring.mmap $ tactic.add_doc_string name,
return name),
args := args } d.type }

add_tactic_doc
{ name := "expand_exists",
Expand Down
48 changes: 35 additions & 13 deletions test/expand_exists.lean
Original file line number Diff line number Diff line change
Expand Up @@ -9,18 +9,17 @@ import tactic.expand_exists
@[expand_exists nat_greater nat_greater_spec]
lemma nat_greater_exists (n : ℕ) : ∃ m : ℕ, n < m := ⟨n + 1, by fconstructor⟩

noncomputable def nat_greater_res : ℕ → ℕ := nat_greater
lemma nat_greater_spec_res : ∀ (n : ℕ), n < nat_greater n := nat_greater_spec
noncomputable example : ℕ → ℕ := nat_greater
example : ∀ (n : ℕ), n < nat_greater n := nat_greater_spec

@[expand_exists dependent_type dependent_type_val dependent_type_spec]
lemma dependent_type_exists {α : Type*} (a : α) : ∃ {β : Type} (b : β), (a, b) = (a, b) :=
⟨unit, (), rfl⟩

def dependent_type_res {α : Type*} (a : α) : Type := dependent_type a
noncomputable def dependent_type_val_res {α : Type*} (a : α) : dependent_type a :=
dependent_type_val a
lemma dependent_type_spec_res
{α : Type*} (a : α) : (a, dependent_type_val a) = (a, dependent_type_val a) := dependent_type_spec a
example {α : Type*} (a : α) : Type := dependent_type a
noncomputable example {α : Type*} (a : α) : dependent_type a := dependent_type_val a
example {α : Type*} (a : α) : (a, dependent_type_val a) = (a, dependent_type_val a) :=
dependent_type_spec a

@[expand_exists nat_greater_nosplit nat_greater_nosplit_spec,
expand_exists nat_greater_split nat_greater_split_lt nat_greater_split_neq]
Expand All @@ -31,11 +30,34 @@ lemma nat_greater_exists₂ (n : ℕ) : ∃ m : ℕ, n < m ∧ m ≠ 0 := begin
finish,
end

noncomputable def nat_greater_nosplit_res : ℕ → ℕ := nat_greater_nosplit
noncomputable def nat_greater_split_res : ℕ → ℕ := nat_greater_split
noncomputable example : ℕ → ℕ := nat_greater_nosplit
noncomputable example : ℕ → ℕ := nat_greater_split

lemma nat_greater_nosplit_spec_res :
∀ (n : ℕ), n < nat_greater_nosplit n ∧ nat_greater_nosplit n ≠ 0 := nat_greater_nosplit_spec
example : ∀ (n : ℕ), n < nat_greater_nosplit n ∧ nat_greater_nosplit n ≠ 0 :=
nat_greater_nosplit_spec

lemma nat_greater_split_spec_lt_res : ∀ (n : ℕ), n < nat_greater_nosplit n := nat_greater_split_lt
lemma nat_greater_split_spec_neq_res : ∀ (n : ℕ), nat_greater_nosplit n ≠ 0 := nat_greater_split_neq
example : ∀ (n : ℕ), n < nat_greater_nosplit n := nat_greater_split_lt
example : ∀ (n : ℕ), nat_greater_nosplit n ≠ 0 := nat_greater_split_neq

@[expand_exists a_doc_string="test" no_doc_string again_a_doc_string="test"]
lemma doc_string_test (n : ℕ) : ∃ (a b : ℕ), a = b := ⟨n, n, rfl⟩

noncomputable example : ℕ → ℕ := a_doc_string
noncomputable example : ℕ → ℕ := no_doc_string
example (n : ℕ) : a_doc_string n = no_doc_string n := again_a_doc_string n

namespace foo
namespace bar
inductive baz
| a : baz
| b : baz → baz

@[expand_exists in_bar @foo.in_foo @in_root]
lemma namespace_test (x : baz) : ∃ (y z : baz), x.b = y ∧ y = z := ⟨x.b, x.b, rfl, rfl⟩

end bar
end foo

noncomputable example : foo.bar.baz → foo.bar.baz := foo.bar.in_bar
noncomputable example : foo.bar.baz → foo.bar.baz := foo.in_foo
example (x : foo.bar.baz) : x.b = foo.bar.in_bar x ∧ foo.bar.in_bar x = foo.in_foo x := in_root x