-
Notifications
You must be signed in to change notification settings - Fork 287
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add examples (vanilla PyTorch, PyTorch Lightning, and PyTorch Lightni…
…ng Distributed) (#1480) * Add MMCR examples * Add MMCR docs page * Add MMCRTransform to docs * Add MMCRLoss to docs
- Loading branch information
Showing
7 changed files
with
324 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,48 @@ | ||
.. _mmcr: | ||
|
||
MMCR | ||
==== | ||
|
||
Example implementation of the MMCR architecture. | ||
|
||
Reference: | ||
`Learning Efficient Coding of Natural Images with Maximum Manifold Capacity Representations, 2023 <https://arxiv.org/abs/2303.03307>`_ | ||
|
||
|
||
.. tabs:: | ||
|
||
.. tab:: PyTorch | ||
|
||
This example can be run from the command line with:: | ||
|
||
python lightly/examples/pytorch/mmcr.py | ||
|
||
.. literalinclude:: ../../../examples/pytorch/mmcr.py | ||
|
||
.. tab:: Lightning | ||
|
||
This example can be run from the command line with:: | ||
|
||
python lightly/examples/pytorch_lightning/mmcr.py | ||
|
||
.. literalinclude:: ../../../examples/pytorch_lightning/mmcr.py | ||
|
||
.. tab:: Lightning Distributed | ||
|
||
This example runs on multiple gpus using Distributed Data Parallel (DDP) | ||
training with Pytorch Lightning. At least one GPU must be available on | ||
the system. The example can be run from the command line with:: | ||
|
||
python lightly/examples/pytorch_lightning_distributed/mmcr.py | ||
|
||
The model differs in the following ways from the non-distributed | ||
implementation: | ||
|
||
- Distributed Data Parallel is enabled | ||
- Synchronized Batch Norm is used in place of standard Batch Norm | ||
|
||
Note that Synchronized Batch Norm is optional and the model can also be | ||
trained without it. Without Synchronized Batch Norm the batch norm for | ||
each GPU is only calculated based on the features on that specific GPU. | ||
|
||
.. literalinclude:: ../../../examples/pytorch_lightning_distributed/mmcr.py |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
# Note: The model and training settings do not follow the reference settings | ||
# from the paper. The settings are chosen such that the example can easily be | ||
# run on a small dataset with a single GPU. | ||
|
||
import copy | ||
|
||
import torch | ||
import torchvision | ||
from torch import nn | ||
|
||
from lightly.loss import MMCRLoss | ||
from lightly.models.modules import SimCLRProjectionHead | ||
from lightly.models.utils import deactivate_requires_grad, update_momentum | ||
from lightly.transforms.mmcr_transform import MMCRTransform | ||
from lightly.utils.scheduler import cosine_schedule | ||
|
||
|
||
class MMCR(nn.Module): | ||
def __init__(self, backbone): | ||
super().__init__() | ||
|
||
self.backbone = backbone | ||
self.projection_head = SimCLRProjectionHead(512, 512, 128) | ||
|
||
self.backbone_momentum = copy.deepcopy(self.backbone) | ||
self.projection_head_momentum = copy.deepcopy(self.projection_head) | ||
|
||
deactivate_requires_grad(self.backbone_momentum) | ||
deactivate_requires_grad(self.projection_head_momentum) | ||
|
||
def forward(self, x): | ||
y = self.backbone(x).flatten(start_dim=1) | ||
z = self.projection_head(y) | ||
return z | ||
|
||
def forward_momentum(self, x): | ||
y = self.backbone_momentum(x).flatten(start_dim=1) | ||
z = self.projection_head_momentum(y) | ||
z = z.detach() | ||
return z | ||
|
||
|
||
resnet = torchvision.models.resnet18() | ||
backbone = nn.Sequential(*list(resnet.children())[:-1]) | ||
model = MMCR(backbone) | ||
|
||
device = "cuda" if torch.cuda.is_available() else "cpu" | ||
model.to(device) | ||
|
||
transform = MMCRTransform(k=8, input_size=32, gaussian_blur=0.0) | ||
dataset = torchvision.datasets.CIFAR10( | ||
"datasets/cifar10", download=True, transform=transform | ||
) | ||
# or create a dataset from a folder containing images or videos: | ||
# dataset = LightlyDataset("path/to/folder", transform=transform) | ||
|
||
dataloader = torch.utils.data.DataLoader( | ||
dataset, | ||
batch_size=256, | ||
shuffle=True, | ||
drop_last=True, | ||
num_workers=8, | ||
) | ||
|
||
criterion = MMCRLoss() | ||
optimizer = torch.optim.SGD(model.parameters(), lr=0.06) | ||
|
||
epochs = 10 | ||
|
||
print("Starting Training") | ||
for epoch in range(epochs): | ||
total_loss = 0 | ||
momentum_val = cosine_schedule(epoch, epochs, 0.996, 1) | ||
for batch in dataloader: | ||
update_momentum(model.backbone, model.backbone_momentum, m=momentum_val) | ||
update_momentum( | ||
model.projection_head, model.projection_head_momentum, m=momentum_val | ||
) | ||
z_o = [model(x.to(device)) for x in batch[0]] | ||
z_m = [model.forward_momentum(x.to(device)) for x in batch[0]] | ||
|
||
# Switch dimensions to (batch_size, k, embedding_size) | ||
z_o = torch.stack(z_o, dim=1) | ||
z_m = torch.stack(z_m, dim=1) | ||
|
||
loss = criterion(z_o, z_m) | ||
total_loss += loss.detach() | ||
loss.backward() | ||
optimizer.step() | ||
optimizer.zero_grad() | ||
avg_loss = total_loss / len(dataloader) | ||
print(f"epoch: {epoch:>02}, loss: {avg_loss:.5f}") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
# Note: The model and training settings do not follow the reference settings | ||
# from the paper. The settings are chosen such that the example can easily be | ||
# run on a small dataset with a single GPU. | ||
|
||
import copy | ||
|
||
import pytorch_lightning as pl | ||
import torch | ||
import torchvision | ||
from torch import nn | ||
|
||
from lightly.loss import MMCRLoss | ||
from lightly.models.modules import SimCLRProjectionHead | ||
from lightly.models.utils import deactivate_requires_grad, update_momentum | ||
from lightly.transforms.mmcr_transform import MMCRTransform | ||
from lightly.utils.scheduler import cosine_schedule | ||
|
||
|
||
class MMCR(pl.LightningModule): | ||
def __init__(self): | ||
super().__init__() | ||
resnet = torchvision.models.resnet18() | ||
self.backbone = nn.Sequential(*list(resnet.children())[:-1]) | ||
self.projection_head = SimCLRProjectionHead(512, 512, 128) | ||
|
||
self.backbone_momentum = copy.deepcopy(self.backbone) | ||
self.projection_head_momentum = copy.deepcopy(self.projection_head) | ||
|
||
deactivate_requires_grad(self.backbone_momentum) | ||
deactivate_requires_grad(self.projection_head_momentum) | ||
|
||
self.criterion = MMCRLoss() | ||
|
||
def forward(self, x): | ||
y = self.backbone(x).flatten(start_dim=1) | ||
z = self.projection_head(y) | ||
return z | ||
|
||
def forward_momentum(self, x): | ||
y = self.backbone_momentum(x).flatten(start_dim=1) | ||
z = self.projection_head_momentum(y) | ||
z = z.detach() | ||
return z | ||
|
||
def training_step(self, batch, batch_idx): | ||
momentum = cosine_schedule(self.current_epoch, 10, 0.996, 1) | ||
update_momentum(self.backbone, self.backbone_momentum, m=momentum) | ||
update_momentum(self.projection_head, self.projection_head_momentum, m=momentum) | ||
z_o = [model(x) for x in batch[0]] | ||
z_m = [model.forward_momentum(x) for x in batch[0]] | ||
|
||
# Switch dimensions to (batch_size, k, embedding_size) | ||
z_o = torch.stack(z_o, dim=1) | ||
z_m = torch.stack(z_m, dim=1) | ||
|
||
loss = self.criterion(z_o, z_m) | ||
return loss | ||
|
||
def configure_optimizers(self): | ||
return torch.optim.SGD(self.parameters(), lr=0.06) | ||
|
||
|
||
model = MMCR() | ||
|
||
# We disable resizing and gaussian blur for cifar10. | ||
transform = MMCRTransform(k=8, input_size=32, gaussian_blur=0.0) | ||
dataset = torchvision.datasets.CIFAR10( | ||
"datasets/cifar10", download=True, transform=transform | ||
) | ||
# or create a dataset from a folder containing images or videos: | ||
# dataset = LightlyDataset("path/to/folder", transform=transform) | ||
|
||
dataloader = torch.utils.data.DataLoader( | ||
dataset, | ||
batch_size=256, | ||
shuffle=True, | ||
drop_last=True, | ||
num_workers=8, | ||
) | ||
|
||
accelerator = "gpu" if torch.cuda.is_available() else "cpu" | ||
|
||
trainer = pl.Trainer(max_epochs=10, devices=1, accelerator=accelerator) | ||
trainer.fit(model=model, train_dataloaders=dataloader) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
# Note: The model and training settings do not follow the reference settings | ||
# from the paper. The settings are chosen such that the example can easily be | ||
# run on a small dataset with a single GPU. | ||
|
||
import copy | ||
|
||
import pytorch_lightning as pl | ||
import torch | ||
import torchvision | ||
from torch import nn | ||
|
||
from lightly.loss import MMCRLoss | ||
from lightly.models.modules import SimCLRProjectionHead | ||
from lightly.models.utils import deactivate_requires_grad, update_momentum | ||
from lightly.transforms.mmcr_transform import MMCRTransform | ||
from lightly.utils.scheduler import cosine_schedule | ||
|
||
|
||
class MMCR(pl.LightningModule): | ||
def __init__(self): | ||
super().__init__() | ||
resnet = torchvision.models.resnet18() | ||
self.backbone = nn.Sequential(*list(resnet.children())[:-1]) | ||
self.projection_head = SimCLRProjectionHead(512, 512, 128) | ||
|
||
self.backbone_momentum = copy.deepcopy(self.backbone) | ||
self.projection_head_momentum = copy.deepcopy(self.projection_head) | ||
|
||
deactivate_requires_grad(self.backbone_momentum) | ||
deactivate_requires_grad(self.projection_head_momentum) | ||
|
||
self.criterion = MMCRLoss() | ||
|
||
def forward(self, x): | ||
y = self.backbone(x).flatten(start_dim=1) | ||
z = self.projection_head(y) | ||
return z | ||
|
||
def forward_momentum(self, x): | ||
y = self.backbone_momentum(x).flatten(start_dim=1) | ||
z = self.projection_head_momentum(y) | ||
z = z.detach() | ||
return z | ||
|
||
def training_step(self, batch, batch_idx): | ||
momentum = cosine_schedule(self.current_epoch, 10, 0.996, 1) | ||
update_momentum(self.backbone, self.backbone_momentum, m=momentum) | ||
update_momentum(self.projection_head, self.projection_head_momentum, m=momentum) | ||
z_o = [model(x) for x in batch[0]] | ||
z_m = [model.forward_momentum(x) for x in batch[0]] | ||
|
||
# Switch dimensions to (batch_size, k, embedding_size) | ||
z_o = torch.stack(z_o, dim=1) | ||
z_m = torch.stack(z_m, dim=1) | ||
|
||
loss = self.criterion(z_o, z_m) | ||
return loss | ||
|
||
def configure_optimizers(self): | ||
return torch.optim.SGD(self.parameters(), lr=0.06) | ||
|
||
|
||
model = MMCR() | ||
|
||
# We disable resizing and gaussian blur for cifar10. | ||
transform = MMCRTransform(k=8, input_size=32, gaussian_blur=0.0) | ||
dataset = torchvision.datasets.CIFAR10( | ||
"datasets/cifar10", download=True, transform=transform | ||
) | ||
# or create a dataset from a folder containing images or videos: | ||
# dataset = LightlyDataset("path/to/folder", transform=transform) | ||
|
||
dataloader = torch.utils.data.DataLoader( | ||
dataset, | ||
batch_size=256, | ||
shuffle=True, | ||
drop_last=True, | ||
num_workers=8, | ||
) | ||
|
||
# Train with DDP and use Synchronized Batch Norm for a more accurate batch norm | ||
# calculation. Distributed sampling is also enabled with replace_sampler_ddp=True. | ||
if __name__ == "__main__": | ||
trainer = pl.Trainer( | ||
max_epochs=10, | ||
devices="auto", | ||
accelerator="gpu", | ||
strategy="ddp", | ||
sync_batchnorm=True, | ||
use_distributed_sampler=True, # or replace_sampler_ddp=True for PyTorch Lightning <2.0 | ||
) | ||
trainer.fit(model=model, train_dataloaders=dataloader) |