Skip to content

lloydhamilton/quarto-medium

Repository files navigation

Quarto Demonstration

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Plot a rose curve

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

import numpy as np
from matplotlib import pyplot as plt

theta = np.linspace(0, 2*np.pi, 1000)
r = 3* np.sin(8 * theta)
plt.polar(theta, r, 'r')  
plt.show()

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

import numpy as np
from matplotlib import pyplot as plt

theta = np.linspace(0, 2*np.pi, 1000)
r = 3* np.sin(8 * theta)
plt.polar(theta+(r<0)*np.pi, np.abs(r), 'r')
plt.show()

Plot a Sine wave

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

import numpy as np 
x = np.linspace(0, 2.0)
y = np.sin(np.pi*x)**2
plt.plot(x, y);

import seaborn as sns
iris = sns.load_dataset('iris')
sns.violinplot(x=iris["species"], y=iris["sepal_length"])
<AxesSubplot:xlabel='species', ylabel='sepal_length'>

Diabetes Dataset

Ten baseline variables, age, sex, body mass index, average blood pressure, and six blood serum measurements were obtained for each of n = 442 diabetes patients, as well as the response of interest, a quantitative measure of disease progression one year after baseline.

## Load diabetes dataset
from sklearn.datasets import load_diabetes
import pandas as pd

diabeties = load_diabetes()
diabeties_df = pd.DataFrame(diabeties.data, columns=diabeties.feature_names)
diabeties_df
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
age sex bmi bp s1 s2 s3 s4 s5 s6
0 0.038076 0.050680 0.061696 0.021872 -0.044223 -0.034821 -0.043401 -0.002592 0.019908 -0.017646
1 -0.001882 -0.044642 -0.051474 -0.026328 -0.008449 -0.019163 0.074412 -0.039493 -0.068330 -0.092204
2 0.085299 0.050680 0.044451 -0.005671 -0.045599 -0.034194 -0.032356 -0.002592 0.002864 -0.025930
3 -0.089063 -0.044642 -0.011595 -0.036656 0.012191 0.024991 -0.036038 0.034309 0.022692 -0.009362
4 0.005383 -0.044642 -0.036385 0.021872 0.003935 0.015596 0.008142 -0.002592 -0.031991 -0.046641
... ... ... ... ... ... ... ... ... ... ...
437 0.041708 0.050680 0.019662 0.059744 -0.005697 -0.002566 -0.028674 -0.002592 0.031193 0.007207
438 -0.005515 0.050680 -0.015906 -0.067642 0.049341 0.079165 -0.028674 0.034309 -0.018118 0.044485
439 0.041708 0.050680 -0.015906 0.017282 -0.037344 -0.013840 -0.024993 -0.011080 -0.046879 0.015491
440 -0.045472 -0.044642 0.039062 0.001215 0.016318 0.015283 -0.028674 0.026560 0.044528 -0.025930
441 -0.045472 -0.044642 -0.073030 -0.081414 0.083740 0.027809 0.173816 -0.039493 -0.004220 0.003064

442 rows × 10 columns

BMI Histplot

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

import seaborn as sns
sns.histplot(data=diabeties_df, x='bmi');

Histplots

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published