Skip to content

Commit

Permalink
Consistent Variables
Browse files Browse the repository at this point in the history
  • Loading branch information
lukasbischof committed Feb 7, 2024
1 parent 6a60890 commit 911246e
Showing 1 changed file with 6 additions and 6 deletions.
12 changes: 6 additions & 6 deletions Hyperbolic.tex
Original file line number Diff line number Diff line change
Expand Up @@ -40,9 +40,9 @@ \subsection{Strip and Characteristics}
The second partial derivatives are then determined by the linear system
\begin{align*}
a\frac{\partial^{2}u}{\partial x^{2}}+2b\frac{\partial^{2}u}{\partial x\partial y}
+ c\frac{\partial^{2}u}{\partial y^{2}} & = h(t)\,=g-d p(t)-e q(t)-f u \\
\dot{x}(t)\frac{\partial^{2}u}{\partial x^{2}}+\dot{y}(t)\frac{\partial^{2}u}{\partial x\partial y} & = \dot{p}(t) \\
\dot{x}(t)\frac{\partial^{2}u}{\partial x\partial y} + \dot{y}(t)\frac{\partial^{2}u}{\partial y^2} & = \dot{q}(t)
+ c\frac{\partial^{2}u}{\partial y^{2}} & = h(s)\,=g-d p(s)-e q(s)-f u \\
\dot{x}(s)\frac{\partial^{2}u}{\partial x^{2}}+\dot{y}(s)\frac{\partial^{2}u}{\partial x\partial y} & = \dot{p}(s) \\
\dot{x}(s)\frac{\partial^{2}u}{\partial x\partial y} + \dot{y}(s)\frac{\partial^{2}u}{\partial y^2} & = \dot{q}(s)
\end{align*}

The \emph{characteristics} of a differential equation are the curves $t\mapsto(x(t),y(t))$ for which the initial data
Expand All @@ -51,8 +51,8 @@ \subsection{Strip and Characteristics}
\det
\begin{bmatrix}
a & 2b & c \\
\dot{x}(t) & \dot{y}(t) & 0 \\
0 & \dot{x}(t) & \dot{y}(t)
\dot{x}(s) & \dot{y}(s) & 0 \\
0 & \dot{x}(s) & \dot{y}(s)
\end{bmatrix}
= 0
\end{align*}
Expand All @@ -65,7 +65,7 @@ \subsection{Strip and Characteristics}
b & c
\end{bmatrix}
\quad\Rightarrow\quad
a\dot{y}(t)^2 - 2b\dot{x}\dot{y}(t) + c\dot{x}(t)^2 = 0
a\dot{y}(s)^2 - 2b\dot{x}(s)\dot{y}(s) + c\dot{x}(s)^2 = 0
$}

(note: $t$ is the mapping variable of the curve, if the PDE uses time (e.g. wave) $s$ may be used)
Expand Down

0 comments on commit 911246e

Please sign in to comment.