Skip to content

Commit

Permalink
deploy: 7428424
Browse files Browse the repository at this point in the history
  • Loading branch information
PeerHerholz committed Oct 25, 2024
1 parent d366e04 commit 4004850
Show file tree
Hide file tree
Showing 15 changed files with 477 additions and 366 deletions.
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
Binary file not shown.
2 changes: 1 addition & 1 deletion _sources/haxby_data.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -2598,7 +2598,7 @@
"source": [
"### Labels and stimulus annotations\n",
"\n",
"As mentioned in prior sessions (e.g.[Supervised learning using scikit-learn](https://main-educational.github.io/material.html#supervised-learning-using-scikit-learn) and hinted at the [beginning of this session](#A-short-primer-on-datasets), when working on a `supervised learning problem`, we also need the `ground truth`/`true labels` for each `sample`. Why? Because we need to evaluate how a given `model` performs via comparing the `labels` it `predicted` to the `true labels`. What these `labels` refer to can be manifold and of course depends on the `task` at hand. \n",
"As mentioned in prior sessions (e.g.[Supervised learning using scikit-learn](https://main-educational.github.io/material.html#supervised-learning-using-scikit-learn) and hinted at the [beginning of this session](#A-short-primer-on-datasets)), when working on a `supervised learning problem`, we also need the `ground truth`/`true labels` for each `sample`. Why? Because we need to evaluate how a given `model` performs via comparing the `labels` it `predicted` to the `true labels`. What these `labels` refer to can be manifold and of course depends on the `task` at hand. \n",
"\n",
"For example, a `supervised learning problem` in the `dataset` at hand could entail `training` a `model` to `recognize` and `predict` what `category` `participants` perceived based on their `brain activation`. Thus, we would need to know what `category` was shown when during the acquisition of the `data` (or which `category` resulted in which `estimated` `brain activity`). \n",
"\n",
Expand Down
401 changes: 240 additions & 161 deletions _sources/mlp_decoding.ipynb

Large diffs are not rendered by default.

100 changes: 50 additions & 50 deletions _sources/svm_decoding.ipynb

Large diffs are not rendered by default.

16 changes: 2 additions & 14 deletions encoding.html
Original file line number Diff line number Diff line change
Expand Up @@ -542,22 +542,10 @@ <h2>Loading the data<a class="headerlink" href="#loading-the-data" title="Link t
Downloading data from https://www.nitrc.org/frs/download.php/8486/miyawaki2008.tgz ...
</pre></div>
</div>
<div class="output stderr highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>Downloaded 28286976 of 161069109 bytes (17.6%, 4.7s remaining)
<div class="output stderr highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>Downloaded 120397824 of 161069109 bytes (74.7%, 0.3s remaining)
</pre></div>
</div>
<div class="output stderr highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>Downloaded 56377344 of 161069109 bytes (35.0%, 3.7s remaining)
</pre></div>
</div>
<div class="output stderr highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>Downloaded 84656128 of 161069109 bytes (52.6%, 2.7s remaining)
</pre></div>
</div>
<div class="output stderr highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>Downloaded 113614848 of 161069109 bytes (70.5%, 1.7s remaining)
</pre></div>
</div>
<div class="output stderr highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>Downloaded 141672448 of 161069109 bytes (88.0%, 0.7s remaining)
</pre></div>
</div>
<div class="output stderr highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span> ...done. (6 seconds, 0 min)
<div class="output stderr highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span> ...done. (2 seconds, 0 min)
Extracting data from /home/runner/nilearn_data/miyawaki2008/18b67c55cebe5e71427c5ffdcfafd948/miyawaki2008.tgz...
</pre></div>
</div>
Expand Down
14 changes: 9 additions & 5 deletions gcn_decoding.html
Original file line number Diff line number Diff line change
Expand Up @@ -510,24 +510,28 @@ <h2>Getting the data<a class="headerlink" href="#getting-the-data" title="Link t
Dataset created in ../data/haxby2001

Downloading data from https://www.nitrc.org/frs/download.php/7868/mask.nii.gz ...
Downloading data from http://data.pymvpa.org/datasets/haxby2001/MD5SUMS ...
</pre></div>
</div>
<div class="output stderr highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span> ...done. (0 seconds, 0 min)
</pre></div>
</div>
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>Downloading data from http://data.pymvpa.org/datasets/haxby2001/MD5SUMS ...
</pre></div>
</div>
<div class="output stderr highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span> ...done. (0 seconds, 0 min)
</pre></div>
</div>
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>Downloading data from http://data.pymvpa.org/datasets/haxby2001/subj4-2010.01.14.tar.gz ...
</pre></div>
</div>
<div class="output stderr highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>Downloaded 148070400 of 329954386 bytes (44.9%, 1.2s remaining)
<div class="output stderr highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>Downloaded 71909376 of 329954386 bytes (21.8%, 3.7s remaining)
</pre></div>
</div>
<div class="output stderr highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>Downloaded 166133760 of 329954386 bytes (50.4%, 2.0s remaining)
</pre></div>
</div>
<div class="output stderr highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>Downloaded 260833280 of 329954386 bytes (79.1%, 0.8s remaining)
</pre></div>
</div>
<div class="output stderr highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>Downloaded 317079552 of 329954386 bytes (96.1%, 0.1s remaining) ...done. (2 seconds, 0 min)
<div class="output stderr highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span> ...done. (4 seconds, 0 min)
</pre></div>
</div>
<div class="output stderr highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>Extracting data from ../data/haxby2001/622d4f5d4b8f14a567901606c924e90d/subj4-2010.01.14.tar.gz...
Expand Down
8 changes: 4 additions & 4 deletions haxby_data.html
Original file line number Diff line number Diff line change
Expand Up @@ -1642,7 +1642,7 @@ <h3>Neuroimaging files<a class="headerlink" href="#neuroimaging-files" title="Li
</div>
</div>
<div class="cell_output docutils container">
<div class="output text_plain highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>&lt;nilearn.plotting.displays._slicers.OrthoSlicer at 0x7f2e26737d10&gt;
<div class="output text_plain highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>&lt;nilearn.plotting.displays._slicers.OrthoSlicer at 0x7ff50eab4610&gt;
</pre></div>
</div>
<img alt="_images/3c2e26146e29b855792c4d733bf847176f0b0773894537d73ef17ebe3a638766.png" src="_images/3c2e26146e29b855792c4d733bf847176f0b0773894537d73ef17ebe3a638766.png" />
Expand Down Expand Up @@ -2151,7 +2151,7 @@ <h3>Neuroimaging files<a class="headerlink" href="#neuroimaging-files" title="Li
</div>
</div>
<div class="cell_output docutils container">
<div class="output text_plain highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>&lt;nilearn.plotting.displays._slicers.OrthoSlicer at 0x7f2e2603bad0&gt;
<div class="output text_plain highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>&lt;nilearn.plotting.displays._slicers.OrthoSlicer at 0x7ff50eab5e10&gt;
</pre></div>
</div>
<img alt="_images/5269164b72a8b290771534a1cf48be42623de3b734d5d5dedd54a1d4fced23e0.png" src="_images/5269164b72a8b290771534a1cf48be42623de3b734d5d5dedd54a1d4fced23e0.png" />
Expand Down Expand Up @@ -2626,7 +2626,7 @@ <h3>Neuroimaging files<a class="headerlink" href="#neuroimaging-files" title="Li
</div>
</div>
<div class="cell_output docutils container">
<div class="output text_plain highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>&lt;nilearn.plotting.displays._slicers.OrthoSlicer at 0x7f2e24d42b90&gt;
<div class="output text_plain highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>&lt;nilearn.plotting.displays._slicers.OrthoSlicer at 0x7ff50e9a1310&gt;
</pre></div>
</div>
<img alt="_images/0956cb496715481247a5e3db1598ed822a4858bb5fbf397163396d3d28e52b26.png" src="_images/0956cb496715481247a5e3db1598ed822a4858bb5fbf397163396d3d28e52b26.png" />
Expand All @@ -2636,7 +2636,7 @@ <h3>Neuroimaging files<a class="headerlink" href="#neuroimaging-files" title="Li
</section>
<section id="labels-and-stimulus-annotations">
<h3>Labels and stimulus annotations<a class="headerlink" href="#labels-and-stimulus-annotations" title="Link to this heading">#</a></h3>
<p>As mentioned in prior sessions (e.g.<a class="reference external" href="https://main-educational.github.io/material.html#supervised-learning-using-scikit-learn">Supervised learning using scikit-learn</a> and hinted at the <a class="reference internal" href="#A-short-primer-on-datasets"><span class="xref myst">beginning of this session</span></a>, when working on a <code class="docutils literal notranslate"><span class="pre">supervised</span> <span class="pre">learning</span> <span class="pre">problem</span></code>, we also need the <code class="docutils literal notranslate"><span class="pre">ground</span> <span class="pre">truth</span></code>/<code class="docutils literal notranslate"><span class="pre">true</span> <span class="pre">labels</span></code> for each <code class="docutils literal notranslate"><span class="pre">sample</span></code>. Why? Because we need to evaluate how a given <code class="docutils literal notranslate"><span class="pre">model</span></code> performs via comparing the <code class="docutils literal notranslate"><span class="pre">labels</span></code> it <code class="docutils literal notranslate"><span class="pre">predicted</span></code> to the <code class="docutils literal notranslate"><span class="pre">true</span> <span class="pre">labels</span></code>. What these <code class="docutils literal notranslate"><span class="pre">labels</span></code> refer to can be manifold and of course depends on the <code class="docutils literal notranslate"><span class="pre">task</span></code> at hand.</p>
<p>As mentioned in prior sessions (e.g.<a class="reference external" href="https://main-educational.github.io/material.html#supervised-learning-using-scikit-learn">Supervised learning using scikit-learn</a> and hinted at the <a class="reference internal" href="#A-short-primer-on-datasets"><span class="xref myst">beginning of this session</span></a>), when working on a <code class="docutils literal notranslate"><span class="pre">supervised</span> <span class="pre">learning</span> <span class="pre">problem</span></code>, we also need the <code class="docutils literal notranslate"><span class="pre">ground</span> <span class="pre">truth</span></code>/<code class="docutils literal notranslate"><span class="pre">true</span> <span class="pre">labels</span></code> for each <code class="docutils literal notranslate"><span class="pre">sample</span></code>. Why? Because we need to evaluate how a given <code class="docutils literal notranslate"><span class="pre">model</span></code> performs via comparing the <code class="docutils literal notranslate"><span class="pre">labels</span></code> it <code class="docutils literal notranslate"><span class="pre">predicted</span></code> to the <code class="docutils literal notranslate"><span class="pre">true</span> <span class="pre">labels</span></code>. What these <code class="docutils literal notranslate"><span class="pre">labels</span></code> refer to can be manifold and of course depends on the <code class="docutils literal notranslate"><span class="pre">task</span></code> at hand.</p>
<p>For example, a <code class="docutils literal notranslate"><span class="pre">supervised</span> <span class="pre">learning</span> <span class="pre">problem</span></code> in the <code class="docutils literal notranslate"><span class="pre">dataset</span></code> at hand could entail <code class="docutils literal notranslate"><span class="pre">training</span></code> a <code class="docutils literal notranslate"><span class="pre">model</span></code> to <code class="docutils literal notranslate"><span class="pre">recognize</span></code> and <code class="docutils literal notranslate"><span class="pre">predict</span></code> what <code class="docutils literal notranslate"><span class="pre">category</span></code> <code class="docutils literal notranslate"><span class="pre">participants</span></code> perceived based on their <code class="docutils literal notranslate"><span class="pre">brain</span> <span class="pre">activation</span></code>. Thus, we would need to know what <code class="docutils literal notranslate"><span class="pre">category</span></code> was shown when during the acquisition of the <code class="docutils literal notranslate"><span class="pre">data</span></code> (or which <code class="docutils literal notranslate"><span class="pre">category</span></code> resulted in which <code class="docutils literal notranslate"><span class="pre">estimated</span></code> <code class="docutils literal notranslate"><span class="pre">brain</span> <span class="pre">activity</span></code>).</p>
<p>Within our <code class="docutils literal notranslate"><span class="pre">tutorial</span> <span class="pre">dataset</span></code>, this information is included in the <code class="docutils literal notranslate"><span class="pre">session_target</span></code> file. Using <a class="reference external" href="https://pandas.pydata.org/pandas-docs/stable/index.html">pandas</a> we can easily <code class="docutils literal notranslate"><span class="pre">load</span></code> and <code class="docutils literal notranslate"><span class="pre">inspect</span></code> this file:</p>
<div class="cell docutils container">
Expand Down
Loading

0 comments on commit 4004850

Please sign in to comment.