Skip to content

manik-500/fast-reinforcement-learning-2

Repository files navigation

Fastrl2

This is a temporary location for fastrl version 2.

Overview

Fastai for computer vision and tabular learning has been amazing. One would wish that this would be the same for RL. The purpose of this repo is to have a framework that is as easy as possible to start, but also designed for testing new agents.

Documentation is being served at https://josiahls.github.io/fast-reinforcement-learning-2/ from documentation directly generated via nbdev in this repo.

Current Issues of Interest

Data Issues

  • data and async_data are still buggy. We need to verify that the order that the data being returned is the best it can be for our models. We need to make sure that "dones" are returned and that there are new duplicate (unless intended)
  • Better data debugging. Do environments skips steps correctly? Do n_steps work correct?

Whats new?

As we have learned how to support as many RL agents as possible, we found that fastrl==1.* was vastly limited in the models that it can support. fastrl==2.* will leverage the nbdev library for better documentation and more relevant testing. We also will be building on the work of the ptan1 library as a close reference for pytorch based reinforcement learning APIs.

1 "Shmuma/Ptan". Github, 2020, https://github.com/Shmuma/ptan. Accessed 13 June 2020.

Install

PyPI (Not implemented yet)

Placeholder here, there is no pypi package yet. It is recommended to do traditional forking.

(For future, currently there is no pypi persion)pip install fastrl==2.0.0 --pre

Conda

conda env create -f environment.yaml

source activate fastrl && pip install ptan --no-dependencies && python setup.py develop

Docker (highly recommend)

For cpu execution

docker build -f fastrl.Dockerfile -t fastrl:latest .
docker run --rm -it -p 8888:8888 -p 4000:4000 --user "$(id -u):$(id -g)" -v $(pwd):/opt/project/fastrl fastrl:latest /bin/bash

Install: Nvidia-Docker

docker build -f fastrl_cuda.Dockerfile -t fastrl_cuda:latest .
docker run --rm -it -p 8888:8888 -p 4000:4000  --gpus all --user "$(id -u):$(id -g)" -v $(pwd):/opt/project/fastrl fastrl_cuda:latest /bin/bash

Contributing

After you clone this repository, please run nbdev_install_git_hooks in your terminal. This sets up git hooks, which clean up the notebooks to remove the extraneous stuff stored in the notebooks (e.g. which cells you ran) which causes unnecessary merge conflicts.

Before submitting a PR, check that the local library and notebooks match. The script nbdev_diff_nbs can let you know if there is a difference between the local library and the notebooks.

  • If you made a change to the notebooks in one of the exported cells, you can export it to the library with nbdev_build_lib or make fastai2.
  • If you made a change to the library, you can export it back to the notebooks with nbdev_update_lib.

About

Temporary place for developing fastrl version 2.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published