Skip to content

Commit

Permalink
Bruhat Order Symmetry
Browse files Browse the repository at this point in the history
  • Loading branch information
hivert committed Jan 21, 2024
1 parent 29a2da3 commit d9b0c97
Showing 1 changed file with 74 additions and 30 deletions.
104 changes: 74 additions & 30 deletions theories/SymGroup/Bruhat.v
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,8 @@ Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Local Open Scope ring_scope.
Local Open Scope nat_scope.
Import GroupScope GRing.Theory.
Import Order.Theory.

Expand All @@ -69,8 +71,8 @@ Lemma bounded_le_homo (m n : nat) f :
(forall i, m <= i < n -> f i <= f i.+1) ->
{in [pred i | m <= i & i <= n] &, {homo f : x y / x <= y}}.
Proof.
move=> H i j; rewrite !inE /= => lein.
elim: j => [_ |j IHj]; first by rewrite leqn0 => /eqP ->.
move=> H i j /[!inE] lein.
elim: j => [_ /[!leqn0]/eqP -> // | j IHj].
move=> /andP[_ ltjn]; rewrite leq_eqVlt ltnS => /orP [/eqP <- // | leij].
have lemj : m <= j by move: lein => /andP[/[swap] _ /leq_trans]; apply.
by apply: (leq_trans (IHj _ leij) (H _ _)); rewrite lemj //= ltnW.
Expand All @@ -81,26 +83,27 @@ Lemma telescope_sumn_in2 n m f : n <= m ->
\sum_(n <= k < m) (f k.+1 - f k) = f m - f n.
Proof.
move=> nm fle; rewrite (telescope_big (fun i j => f j - f i)).
by case: ltngtP nm => // ->; rewrite subnn.
by case: ltngtP nm => // -> /[!subnn].
move=> k /andP[nk km] /=; rewrite addnBAC ?fle 1?ltnW// ?subnKC// ?fle// inE.
- by rewrite (ltnW nk) ltnW.
- by rewrite ltnW // (ltn_trans nk).
- by rewrite leqnn ltnW // (ltn_trans nk).
- by rewrite ltnW //= ltnW.
Qed.


Section PermMX.

Variable (R : semiRingType) (n : nat).
Implicit Type (s t : 'S_n).

Lemma perm_mx_eq1 s : (@perm_mx R n s == (1%:M)%R) = (s == 1).
Lemma perm_mx_eq1 s : (@perm_mx R n s == 1%:M) = (s == 1).
Proof.
apply/eqP/eqP=> [| ->]; last by rewrite perm_mx1.
apply/eqP/eqP=> [| -> /[!perm_mx1] //].
rewrite /perm_mx row_permEsub => /esym Heq.
apply/permP=> /= i; rewrite perm1.
apply/permP=> /= i /[!perm1].
move/(congr1 (fun m : 'M__ => m i i)): Heq; rewrite !mxE eq_refl /=.
by case: eqP => //= _ /eqP; rewrite oner_eq0.
by case: eqP => //= _ /eqP /[!oner_eq0].
Qed.

Lemma perm_mx_inj : injective (@perm_mx R n).
Expand Down Expand Up @@ -134,7 +137,7 @@ have pex_inj : injective (fun i : 'I_n => proj1_sig (pex i)).
have {neqi0} eqi0 l : m l k = 1%N -> l = i0.
by move/eqP; apply/contraTeq => /neqi0 ->.
by rewrite (eqi0 _ mik) (eqi0 _ mjk).
exists (perm pex_inj); apply/eqP/matrixP=> i j; rewrite !mxE permE.
exists (perm pex_inj); apply/eqP/matrixP=> i j /[!mxE] /[!permE].
case: (pex i) => k /= /andP[/eqP mik /forallP/= neq0].
case: eqP => [<-{j} // | /eqP]; rewrite eq_sym.
by have /implyP/[apply]/eqP-> := neq0 j.
Expand All @@ -153,7 +156,7 @@ Hint Resolve lti1 lti perm_inj lei : core.

Lemma setIE (T : finType) (pA pB : pred T) :
[set y | pA y & pB y] = [set y | pA y] :&: [set y | pB y].
Proof. by apply/setP=> x; rewrite !inE. Qed.
Proof. by apply/setP=> x /[!inE]. Qed.

Lemma sum_lt1 n k : k <= n -> \sum_(i < n | i < k) 1 = k.
Proof.
Expand Down Expand Up @@ -193,20 +196,19 @@ Implicit Type (s : 'S_n).

Local Notation mxsum := (@mxsum n).

Lemma mxsum_tr m : (mxsum m^T = (mxsum m)^T)%R.
Lemma mxsum_tr m : mxsum m^T = (mxsum m)^T.
Proof.
apply matrixP=> i j; rewrite !mxE exchange_big_idem //=.
apply: eq_bigr => k ltkj; apply: eq_bigr => l ltli.
by rewrite mxE.
apply matrixP=> i j /[!mxE]; rewrite exchange_big_idem //=.
by apply: eq_bigr => k ltkj; apply: eq_bigr => l ltli /[!mxE].
Qed.

Lemma mxdiff_tr M : (mxdiff M^T = (mxdiff M)^T)%R.
Proof. by apply matrixP=> i j; rewrite !mxE -subnDAC subnDA. Qed.
Lemma mxdiff_tr M : mxdiff M^T = (mxdiff M)^T.
Proof. by apply matrixP=> i j /[!mxE]; rewrite -subnDAC subnDA. Qed.

Lemma mxsumK : cancel mxsum mxdiff.
Proof.
case: n => [|n0]; first by move=> m; apply matrixP => [[]] .
move=> m; apply matrixP=> i j; rewrite mxE !mxsumE //.
case: n => [| n0] m; first by apply matrixP => [[]] .
apply matrixP=> i j /[1!mxE] /[!mxsumE] //.
rewrite !big_nat_recr /= // !inord_val.
by rewrite -!addnA [X in X - _ - _]addnC addnK addnC -addnA addnK.
Qed.
Expand All @@ -227,14 +229,12 @@ Qed.

Lemma perm_mxsum1 i j : mxsum (perm_mx 1) i j = minn i j.
Proof.
rewrite perm_mxsumE.
rewrite (eq_bigl (fun k : 'I_n => k < minn i j)).
rewrite perm_mxsumE (eq_bigl (fun k : 'I_n => k < minn i j)).
exact (sum_lt1 (leq_trans (geq_minr i j) (ltn_ord j))).
by move=> k; rewrite perm1 ltn_min.
Qed.

Lemma perm_mxsum_maxperm i j :
mxsum (perm_mx maxperm) i j = i + j - n.
Lemma perm_mxsum_maxperm i j : mxsum (perm_mx maxperm) i j = i + j - n.
Proof.
rewrite perm_mxsumE.
rewrite (eq_bigl (fun k : 'I_n => (k < i) && (n - j <= k))); first last.
Expand Down Expand Up @@ -295,16 +295,15 @@ suff {M} impl M : is_pmxsum M -> is_pmxsum M^T.
apply/idP/idP; last exact: impl.
by rewrite -{2}(trmxK M); apply: impl.
rewrite /is_pmxsum trmxK => /and3P[-> -> /=] /is_pmxsum_posP H.
by apply/is_pmxsum_posP => i j; rewrite !mxE addnC.
by apply/is_pmxsum_posP => i j /[!mxE] /[1!addnC].
Qed.

Lemma is_perm_mxsum_rowP s : is_pmxsum_row (mxsum (perm_mx s)).
Proof.
apply/is_pmxsum_rowP; split=> [i | i | i j]; rewrite !perm_mxsumE.
- by rewrite sum1dep_card setIE [X in _ :&: X](_ : _ = set0) ?setI0 ?cards0.
- rewrite sum1dep_card setIE [X in _ :&: X](_ : _ = setT).
by rewrite setIT -sum1dep_card sum_lt1.
by apply/setP=> /= k; rewrite !inE ltn_ord.
- by rewrite !big_mkcondr_idem //=; apply big1.
- rewrite (eq_bigl (fun k : 'I_n => k < i)) ?sum_lt1 // => k /=.
by rewrite ltn_ord andbC.
- apply sub_le_big => //=; first by move=> a b; apply leq_addr.
move=> k /andP[->] /= /leq_trans; apply.
by rewrite inordK ?leq_pred // (leq_ltn_trans (leq_pred _)).
Expand All @@ -313,7 +312,7 @@ Qed.
End IsPermMatrixSum.


#[local] Lemma sum_mxdiff n0 (n := n0.+1) (M : 'M[nat]_n.+1) k j:
Lemma sum_mxdiff n0 (n := n0.+1) (M : 'M[nat]_n.+1) k j:
is_pmxsum M -> k < n -> j <= n ->
\sum_(0 <= l < j) mxdiff M (inord k) (inord l) =
M (inord k.+1) (inord j) - M (inord k) (inord j).
Expand Down Expand Up @@ -377,7 +376,7 @@ case: n => [|n0].
move=> M /and3P[/is_pmxsum_rowP[C0 _ _] _ _].
by apply/matrixP => i j; rewrite !mxE !big_ord0 !ord1 C0.
set n' := n0.+1 => M /[dup] HM /and3P[_ /is_pmxsum_rowP[C0 _ Cincr] _].
have {}C0 i : M ord0 i = 0 by move/(_ i): C0; rewrite mxE.
have {}C0 i : M ord0 i = 0 by move/(_ i): C0 => /[!mxE].
have {}Cincr i j (ltin : i < n') :
M (inord i) (inord j) <= M (inord i.+1) (inord j).
by move/(_ (inord j) (inord i.+1)): Cincr; rewrite !mxE inordK // ltnS.
Expand Down Expand Up @@ -445,7 +444,8 @@ Fact Bruhat1s s : 1 <=B s.
Proof.
suff lecoeff t i j : perm_mxsum t i j <= i.
apply/BruhatP => i j; rewrite perm_mxsum1 leq_min lecoeff /=.
rewrite [X in X <= _](_ : _ = (mxsum (perm_mx s))^T j i)%R; last by rewrite !mxE.
rewrite [X in X <= _](_ : _ = (mxsum (perm_mx s))^T j i);
last by rewrite !mxE.
by rewrite -mxsum_tr tr_perm_mx lecoeff.
rewrite perm_mxsumE.
have /sum_lt1 {2}<- : i <= n by [].
Expand All @@ -461,7 +461,7 @@ apply/BruhatP => i j; rewrite perm_mxsum_maxperm perm_mxsumE.
rewrite sum1dep_card setIE cardsI.
rewrite -[X in _ <=_ + X - _](card_imset _ (@perm_inj _ s)) /=.
rewrite [imset _ _](_ : _ = [set x : 'I_n | x < j]); first last.
apply/setP => /= k; rewrite inE.
apply/setP => /= k /[!inE].
by rewrite -(permKV s k) mem_imset // inE permKV.
rewrite -![in X in _ <= X - _]sum1dep_card !sum_lt1 //; apply: leq_sub2l.
rewrite -[X in _ <= X](card_ord n) -cardsT /=.
Expand Down Expand Up @@ -497,6 +497,50 @@ End BruhatOrder.
HB.export BruhatOrder.Exports.


Section Symmetry.

Context {n : nat}.
Implicit Types (s t : 'S_n).

Lemma BruhatV s t : (s^-1 <=B t^-1) = (s <=B t).
Proof.
suff {s t} impl (s t : 'S_n) : (s <=B t) -> (s^-1 <=B t^-1).
apply/idP/idP; last exact: impl.
by move/impl; rewrite !invgK.
move/BruhatP=> H; apply/BruhatP=> i j.
by rewrite -!tr_perm_mx !mxsum_tr ![_^T _ _]mxE.
Qed.

Lemma Bruhat_maxM s t : (s * maxperm <=B t * maxperm) = (t <=B s).
Proof.
case: n s t => [|n0] s t; first by rewrite !permS0 lexx.
suff {s t} impl (s t : 'S_n0.+1) : (s <=B t) -> (t * maxperm<=B s * maxperm).
apply/idP/idP; last exact: impl.
by move/impl; rewrite -!mulgA -{2 4}maxpermV !mulgV !mulg1.
set N := n0.+1 in s t *.
suff {s t} mxsum_maxpermM i j (s : 'S_N) :
mxsum (perm_mx (s * maxperm)) i j = i - mxsum (perm_mx s) i (rev_ord j).
move/BruhatP=> HB; apply/BruhatP=> i j.
by rewrite !{}mxsum_maxpermM; apply/leq_sub2l/HB.
have /[!ltnS]/sum_lt1 <- := ltn_ord i.
rewrite !perm_mxsumE !big_mkcondr_idem //=.
set S := (X in _ = _ - X); apply/eqP; rewrite -(eqn_add2r S) subnK; first last.
by rewrite {}/S; apply leq_sum => k _; case: ltnP.
rewrite {}/S -big_split_idem //=.
apply/eqP/eq_bigr => k ltki; rewrite permM permE /=.
rewrite -subSn // !subSS leq_subCl leqNgt.
by case: ltnP => /= _; rewrite ?addn0 ?add0n.
Qed.

Lemma Bruhat_Mmax s t : (maxperm * s <=B maxperm * t) = (t <=B s).
Proof. by rewrite -[LHS]BruhatV !invMg !maxpermV Bruhat_maxM BruhatV. Qed.

Lemma Bruhat_conj_max s t : (s ^ maxperm <=B t ^ maxperm) = (s <=B t).
Proof. by rewrite /conjg maxpermV Bruhat_Mmax Bruhat_maxM. Qed.

End Symmetry.


(*
0 0 0 0
x
Expand Down

0 comments on commit d9b0c97

Please sign in to comment.