Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Continuous functions are dense in L1 #1015

Merged
merged 8 commits into from
Aug 31, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 19 additions & 0 deletions CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,19 @@
+ new definition `regular_space`.
+ new lemma `ent_closure`.

- in file `lebesgue_integral.v`,
+ new lemmas `simple_bounded`, `measurable_bounded_integrable`,
`compact_finite_measure`, `approximation_continuous_integrable`

- in `sequences.v`:
+ lemma `cvge_harmonic`

- in `mathcomp_extra.v`:
+ lemmas `le_bigmax_seq`, `bigmax_sup_seq`

- in `constructive_ereal.v`:
+ lemma `bigmaxe_fin_num`

### Changed

- `mnormalize` moved from `kernel.v` to `measure.v` and generalized
Expand All @@ -53,6 +66,12 @@
- removed dependency in `Rstruct.v` on `normedtype.v`:
- added dependency in `normedtype.v` on `Rstruct.v`:

- in `cardinality.v`:
+ implicits of `fimfunP`

- in `lebesgue_integral.v`:
+ implicits of `integral_le_bound`

### Renamed

- in `normedtype.v`:
Expand Down
4 changes: 3 additions & 1 deletion classical/cardinality.v
Original file line number Diff line number Diff line change
Expand Up @@ -1235,13 +1235,15 @@ HB.mixin Record FiniteImage aT rT (f : aT -> rT) := {
}.
HB.structure Definition FImFun aT rT := {f of @FiniteImage aT rT f}.

Arguments fimfunP {aT rT} _.
#[global] Hint Resolve fimfunP : core.

Reserved Notation "{ 'fimfun' aT >-> T }"
(at level 0, format "{ 'fimfun' aT >-> T }").
Reserved Notation "[ 'fimfun' 'of' f ]"
(at level 0, format "[ 'fimfun' 'of' f ]").
Notation "{ 'fimfun' aT >-> T }" := (@FImFun.type aT T) : form_scope.
Notation "[ 'fimfun' 'of' f ]" := [the {fimfun _ >-> _} of f] : form_scope.
#[global] Hint Resolve fimfunP : core.

Lemma fimfun_inP {aT rT} (f : {fimfun aT >-> rT}) (D : set aT) :
finite_set (f @` D).
Expand Down
22 changes: 22 additions & 0 deletions classical/mathcomp_extra.v
Original file line number Diff line number Diff line change
Expand Up @@ -1416,3 +1416,25 @@ Qed.
End max_min.

Notation trivial := (ltac:(done)).

Section bigmax_seq.
Context d {T : orderType d} {x : T} {I : eqType}.
Variables (r : seq I) (i0 : I) (P : pred I).

(* NB: as of [2023-08-28], bigop.leq_bigmax_seq already exists for nat *)
Lemma le_bigmax_seq F :
i0 \in r -> P i0 -> (F i0 <= \big[Order.max/x]_(i <- r | P i) F i)%O.
Proof.
move=> + Pi0; elim: r => // h t ih; rewrite inE big_cons.
move=> /predU1P[<-|i0t]; first by rewrite Pi0 le_maxr// lexx.
by case: ifPn => Ph; [rewrite le_maxr ih// orbT|rewrite ih].
Qed.

(* NB: as of [2023-08-28], bigop.bigmax_sup_seq already exists for nat *)
Lemma bigmax_sup_seq (m : T) (F : I -> T) :
i0 \in r -> P i0 -> (m <= F i0)%O ->
(m <= \big[Order.max/x]_(i <- r | P i) F i)%O.
Proof. by move=> i0r Pi0 ?; apply: le_trans (le_bigmax_seq _ _ _). Qed.

End bigmax_seq.
Arguments le_bigmax_seq {d T} x {I r} i0 P.
10 changes: 10 additions & 0 deletions theories/constructive_ereal.v
Original file line number Diff line number Diff line change
Expand Up @@ -2413,6 +2413,16 @@ Lemma mineMl z x y : z \is a fin_num -> 0 < z ->
mine x y * z = mine (x * z) (y * z).
Proof. by move=> zfin z0; rewrite muleC mineMr// !(muleC z). Qed.

Lemma bigmaxe_fin_num (s : seq R) r : r \in s ->
\big[maxe/-oo%E]_(i <- s) i%:E \is a fin_num.
Proof.
move=> rs; have {rs} : s != [::].
by rewrite -size_eq0 -lt0n -has_predT; apply/hasP; exists r.
elim: s => [[]//|a l]; have [-> _ _|_ /(_ isT) ih _] := eqVneq l [::].
by rewrite big_seq1.
by rewrite big_cons {1}/maxe; case: (_ < _)%E.
Qed.

Lemma lee_pemull x y : 0 <= y -> 1 <= x -> y <= x * y.
Proof.
move: x y => [x| |] [y| |] //; last by rewrite mulyy.
Expand Down
2 changes: 1 addition & 1 deletion theories/kernel.v
Original file line number Diff line number Diff line change
Expand Up @@ -1006,7 +1006,7 @@ HB.instance Definition _ n := @isMeasurableFun.Build _ _ _ _ (mk_2 n).

Let fk_2 n : finite_set (range (k_2 n)).
Proof.
have := @fimfunP _ _ (k_ n).
have := fimfunP (k_ n).
suff : range (k_ n) = range (k_2 n) by move=> <-.
by apply/seteqP; split => r [y ?] <-; [exists (point, y)|exists y.2].
Qed.
Expand Down
187 changes: 159 additions & 28 deletions theories/lebesgue_integral.v
Original file line number Diff line number Diff line change
Expand Up @@ -400,6 +400,24 @@ rewrite /preimage /= => [fxfy gzf].
by rewrite gzf -fxfy addrC subrK.
Qed.

Section simple_bounded.
Context d (T : measurableType d) (R : realType).

Lemma simple_bounded (f : {sfun T >-> R}) :
bounded_fun (f : T -> [normedModType R of R^o]).
Proof.
have /finite_seqP[r fr] := fimfunP f.
exists (fine (\big[maxe/-oo%E]_(i <- r) `|i|%:E)).
split; rewrite ?num_real// => x mx z _; apply/ltW/(le_lt_trans _ mx).
have ? : f z \in r by have := imageT f z; rewrite fr.
rewrite -[leLHS]/(fine `|f z|%:E) fine_le//.
have := @bigmaxe_fin_num _ (map normr r) `|f z|.
by rewrite big_map => ->//; apply/mapP; exists (f z).
by rewrite (bigmax_sup_seq _ _ (lexx _)).
Qed.

End simple_bounded.

Section nnsfun_functions.
Context d (T : measurableType d) (R : realType).

Expand Down Expand Up @@ -1632,7 +1650,7 @@ Let lusin_simple (f : {sfun R >-> rT}) (eps : rT) : (0 < eps)%R ->
exists K, [/\ compact K, K `<=` A, mu (A `\` K) < eps%:E &
{within K, continuous f}].
Proof.
move: eps=> _/posnumP[eps]; have [N /card_fset_set rfN] := @fimfunP _ _ f.
move: eps=> _/posnumP[eps]; have [N /card_fset_set rfN] := fimfunP f.
pose Af x : set R := A `&` f @^-1` [set x].
have mAf x : measurable (Af x) by exact: measurableI.
have finAf x : mu (Af x) < +oo.
Expand Down Expand Up @@ -4264,6 +4282,7 @@ by apply: ae_ge0_le_integral => //; exact: measurableT_comp.
Qed.

End integral_bounded.
Arguments integral_le_bound {d T R mu D f} M.

Section integral_ae_eq.
Local Open Scope ereal_scope.
Expand Down Expand Up @@ -4743,6 +4762,17 @@ Variables (mu : {measure set T -> \bar R}) (E : set T) (mE : measurable E).

Local Open Scope ereal_scope.

Lemma measurable_bounded_integrable (f : T -> R^o) :
mu E < +oo -> measurable_fun E f ->
[bounded f x | x in E] -> mu.-integrable E (EFin \o f).
Proof.
move=> Afin mfA bdA; apply/integrableP; split; first exact/EFin_measurable_fun.
have [M [_ mrt]] := bdA; apply: le_lt_trans.
apply: (integral_le_bound (`|M| + 1)%:E) => //; first exact: measurableT_comp.
by apply: aeW => z Az; rewrite lee_fin mrt// ltr_spaddr// ler_norm.
by rewrite lte_mul_pinfty.
Qed.

Let sfun_dense_L1_pos (f : T -> \bar R) :
mu.-integrable E f -> (forall x, E x -> 0 <= f x) ->
exists g_ : {sfun T >-> R}^nat,
Expand Down Expand Up @@ -4819,9 +4849,128 @@ rewrite !ger0_norm ?fine_ge0 ?integral_ge0 ?fine_le//.
+ by apply: emeasurable_funD; [move: mfp | move: mfn]; case/integrableP.
+ by move=> ? ?; rewrite fpn; exact: lee_abs_sub.
Unshelve. all: by end_near. Qed.

End simple_density_L1.

Section continuous_density_L1.
Context (rT : realType).
Let mu := [the measure _ _ of @lebesgue_measure rT].
Let R := [the measurableType _ of measurableTypeR rT].
Local Open Scope ereal_scope.

Lemma compact_finite_measure (A : set R^o) : compact A -> mu A < +oo.
Proof.
move=> /[dup]/compact_measurable => mA /compact_bounded[N [_ N1x]].
have AN1 : (A `<=` `[- (`|N| + 1), `|N| + 1])%R.
by move=> z Az; rewrite set_itvcc /= -ler_norml N1x// ltr_spaddr// ler_norm.
rewrite (le_lt_trans (le_measure _ _ _ AN1)) ?inE//=.
by rewrite lebesgue_measure_itv hlength_itv/= lte_fin gtr_opp// EFinD ltry.
Qed.

Lemma continuous_compact_integrable (f : R -> R^o) (A : set R^o) :
compact A -> {within A, continuous f} -> mu.-integrable A (EFin \o f).
Proof.
move=> cptA ctsfA; apply: measurable_bounded_integrable.
- exact: compact_measurable.
- exact: compact_finite_measure.
- by apply: subspace_continuous_measurable_fun => //; exact: compact_measurable.
- have /compact_bounded[M [_ mrt]] := continuous_compact ctsfA cptA.
by exists M; split; rewrite ?num_real // => ? ? ? ?; exact: mrt.
Qed.

Lemma approximation_continuous_integrable (E : set R) (f : R -> R^o):
measurable E -> mu E < +oo -> mu.-integrable E (EFin \o f) ->
exists g_ : (rT -> rT)^nat,
[/\ forall n, continuous (g_ n),
forall n, mu.-integrable E (EFin \o g_ n) &
(fun n => \int[mu]_(z in E) `|(f z - g_ n z)%:E|) --> 0].
Proof.
move=> mE Efin intf.
have mf : measurable_fun E f by case/integrableP : intf => /EFin_measurable_fun.
suff apxf eps : exists h : rT -> rT, (eps > 0)%R ->
[/\ continuous h,
mu.-integrable E (EFin \o h) &
\int[mu]_(z in E) `|(f z - h z)%:E| < eps%:E].
pose g_ n := projT1 (cid (apxf n.+1%:R^-1)); exists g_; split.
- by move=> n; have [] := projT2 (cid (apxf n.+1%:R^-1)).
- by move=> n; have [] := projT2 (cid (apxf n.+1%:R^-1)).
apply/cvg_ballP => eps epspos.
have /cvg_ballP/(_ eps epspos)[N _ Nball] := @cvge_harmonic rT.
exists N => //; apply: (subset_trans Nball) => n.
rewrite /ball /= /ereal_ball contract0 !sub0r !normrN => /(lt_trans _); apply.
rewrite ?ger0_norm; first last.
- by rewrite -le_expandLR // ?inE ?normr0// expand0 integral_ge0.
- by rewrite -le_expandLR // ?inE ?normr0// expand0.
have [] := projT2 (cid (apxf n.+1%:R^-1)) => // _ _ ipaxfn.
by rewrite -lt_expandRL ?contractK// inE contract_le1.
have [|] := ltP 0%R eps; last by exists point.
move: eps => _/posnumP[eps].
have [g [gfe2 ig]] : exists g : {sfun R >-> rT},
\int[mu]_(z in E) `|(f z - g z)%:E| < (eps%:num / 2)%:E /\
mu.-integrable E (EFin \o g).
have [g_ [intG ?]] := approximation_sfun_integrable mE intf.
move/fine_fcvg/cvg_ballP/(_ (eps%:num / 2)) => -[] // n _ Nb; exists (g_ n).
have fg_fin_num : \int[mu]_(z in E) `|(f z - g_ n z)%:E| \is a fin_num.
rewrite integral_fune_fin_num// integrable_abse//.
by under eq_fun do rewrite EFinB; apply: integrableB => //; exact: intG.
split; last exact: intG.
have /= := Nb _ (leqnn n); rewrite /ball/= sub0r normrN -fine_abse// -lte_fin.
by rewrite fineK ?abse_fin_num// => /le_lt_trans; apply; exact: lee_abs.
have mg : measurable_fun E g.
by apply: (measurable_funS measurableT) => //; exact: measurable_funP.
have [M Mpos Mbd] : (exists2 M, 0 < M & forall x, `|g x| <= M)%R.
have [M [_ /= bdM]] := simple_bounded g.
exists (`|M| + 1)%R; first exact: ltr_spaddr.
by move=> x; rewrite bdM// ltr_spaddr// ler_norm.
have [] // := @measurable_almost_continuous _ _ mE _ g (eps%:num / 2 / (M *+ 2)).
by rewrite divr_gt0// mulrn_wgt0.
move=> A [cptA AE /= muAE ctsAF].
have [] := continuous_bounded_extension _ _ Mpos ctsAF.
- exact: pseudometric_normal.
- by apply: compact_closed => //; exact: Rhausdorff.
- by move=> ? ?; exact: Mbd.
have mA : measurable A := compact_measurable cptA.
move=> h [gh ctsh hbdM]; have mh : measurable_fun E h.
by apply: subspace_continuous_measurable_fun=> //; exact: continuous_subspaceT.
have intg : mu.-integrable E (EFin \o h).
apply: measurable_bounded_integrable => //.
exists M; split; rewrite ?num_real // => x Mx y _ /=.
by rewrite (le_trans _ (ltW Mx)).
exists h; split => //; rewrite [eps%:num]splitr; apply: le_lt_trans.
pose fgh x := `|(f x - g x)%:E| + `|(g x - h x)%:E|.
apply: (@ge0_le_integral _ _ _ mu _ mE _ fgh) => //.
- apply: (measurable_funS mE) => //; do 2 apply: measurableT_comp => //.
exact: measurable_funB.
- by move=> z _; rewrite /fgh.
- apply: measurableT_comp => //; apply: measurable_funD => //;
apply: (measurable_funS mE) => //; (apply: measurableT_comp => //);
exact: measurable_funB.
- move=> x _; rewrite -(subrK (g x) (f x)) -(addrA (_ + _)%R) lee_fin.
by rewrite ler_norm_add.
rewrite integralD//; first last.
- by apply: integrable_abse; under eq_fun do rewrite EFinB; apply: integrableB.
- by apply: integrable_abse; under eq_fun do rewrite EFinB; apply: integrableB.
rewrite EFinD lte_add// -(setDKU AE) integral_setU => //; first last.
- by rewrite /disj_set setDKI.
- rewrite setDKU //; do 2 apply: measurableT_comp => //.
exact: measurable_funB.
- exact: measurableD.
rewrite (@ae_eq_integral _ _ _ mu A (cst 0)) //; first last.
- by apply: aeW => z Az; rewrite (gh z) ?inE// subrr abse0.
- apply: (measurable_funS mE) => //; do 2 apply: measurableT_comp => //.
exact: measurable_funB.
rewrite integral0 adde0.
apply: (le_lt_trans (integral_le_bound (M *+ 2)%:E _ _ _ _)) => //.
- exact: measurableD.
- apply: (measurable_funS mE) => //; apply: measurableT_comp => //.
exact: measurable_funB.
- by rewrite lee_fin mulrn_wge0// ltW.
- apply: aeW => z [Ez _]; rewrite /= lee_fin mulr2n.
by rewrite (le_trans (ler_norm_sub _ _))// ler_add.
by rewrite -lte_pdivl_mull ?mulrn_wgt0// muleC -EFinM.
Qed.

End continuous_density_L1.

Section fubini_functions.
Local Open Scope ereal_scope.
Context d1 d2 (T1 : measurableType d1) (T2 : measurableType d2) (R : realType).
Expand Down Expand Up @@ -5393,24 +5542,6 @@ Context (rT : realType).
Let mu := [the measure _ _ of @lebesgue_measure rT].
Let R := [the measurableType _ of measurableTypeR rT].

Lemma continuous_compact_integrable (f : R -> R^o) (A : set R^o) :
compact A -> {within A, continuous f} -> mu.-integrable A (EFin \o f).
Proof.
move=> cptA ctsfA; have mA := compact_measurable cptA; apply/integrableP; split.
by apply: measurableT_comp => //; exact: subspace_continuous_measurable_fun.
have /compact_bounded [M [_ mrt]] := continuous_compact ctsfA cptA.
apply: le_lt_trans.
apply (@integral_le_bound _ _ _ _ _ _ (`|M| + 1)%:E) => //.
by apply: measurableT_comp => //; exact: subspace_continuous_measurable_fun.
by apply: aeW => /= z Az; rewrite lee_fin mrt // ltr_spaddr// ler_norm.
case/compact_bounded : cptA => N [_ N1x].
have AN1 : A `<=` `[- (`|N| + 1), `|N| + 1].
by move=> z Az; rewrite set_itvcc /= -ler_norml N1x// ltr_spaddr// ler_norm.
apply: (@le_lt_trans _ _ (_ * _)%E).
by rewrite lee_pmul; last by apply: (le_measure _ _ _ AN1); rewrite inE.
by rewrite /= lebesgue_measure_itv hlength_itv /= -fun_if -EFinM ltry.
Qed.

Let ballE (x : R) (r : {posnum rT}) :
ball x r%:num = `](x - r%:num), (x + r%:num)[%classic :> set rT.
Proof.
Expand Down Expand Up @@ -5476,16 +5607,16 @@ suff : (\int[mu]_(z in `[(x - r)%R, (x + r)%R]) `|f z - f x|%:E <=
move=> intfeps; apply: le_trans.
apply: (ler_pmul r20 _ (le_refl _)); first exact: fine_ge0.
apply: fine_le; last apply: le_abse_integral => //.
- by rewrite abse_fin_num; exact: integral_fune_fin_num.
- by apply: integral_fune_fin_num => //; exact: integrable_abse.
- by case/integrableP: int_fx.
- by rewrite abse_fin_num integral_fune_fin_num.
- by rewrite integral_fune_fin_num// integrable_abse.
- by case/integrableP : int_fx.
rewrite div1r ler_pdivr_mull ?mulrn_wgt0 // -[_ * _]/(fine (_%:E)).
by rewrite fine_le // ?integral_fune_fin_num // ?integrable_abse.
by rewrite fine_le// integral_fune_fin_num// integrable_abse.
apply: le_trans.
apply: (@integral_le_bound _ _ _ _ _ (fun z => (f z - f x)%:E) eps%:E) => //.
- by case/integrableP: int_fx.
- exact: ltW.
- by apply: aeW => ? ?; rewrite /= lee_fin distrC; apply: feps.
- apply: (@integral_le_bound _ _ _ _ _ (fun z => (f z - f x)%:E) eps%:E) => //.
+ by case/integrableP: int_fx.
+ exact: ltW.
+ by apply: aeW => ? ?; rewrite /= lee_fin distrC feps.
by rewrite ritv //= -EFinM lee_fin mulrC.
Unshelve. all: by end_near. Qed.

Expand Down
3 changes: 3 additions & 0 deletions theories/sequences.v
Original file line number Diff line number Diff line change
Expand Up @@ -771,6 +771,9 @@ rewrite (le_trans (ltW (archi_boundP _)))// ler_nat -add1n -leq_subLR.
by near: i; apply: nbhs_infty_ge.
Unshelve. all: by end_near. Qed.

Lemma cvge_harmonic {R : archiFieldType} : (EFin \o @harmonic R) @ \oo --> 0%E.
Proof. by apply: cvg_EFin; [exact: nearW | exact: cvg_harmonic]. Qed.

Lemma dvg_harmonic (R : numFieldType) : ~ cvg (series (@harmonic R)).
Proof.
have ge_half n : (0 < n)%N -> 2^-1 <= \sum_(n <= i < n.*2) harmonic i.
Expand Down