Skip to content

Commit

Permalink
Browse files Browse the repository at this point in the history
  • Loading branch information
pi8027 committed Apr 10, 2024
1 parent e671c7b commit 3b79f76
Show file tree
Hide file tree
Showing 2 changed files with 18 additions and 5 deletions.
8 changes: 5 additions & 3 deletions src/mpoly.v
Original file line number Diff line number Diff line change
Expand Up @@ -519,7 +519,7 @@ apply/esym; rewrite andbC /mnmc_lt /mnmc_le lt_def lexi_cons eqseq_cons.
by case: ltgtP; rewrite //= 1?andbC //; apply/contra_ltN => /eqP ->.
Qed.

HB.instance Definition _ := Order.isPOrder.Build tt 'X_{1..n}
HB.instance Definition _ := Order.isPOrder.Build Order.default_display 'X_{1..n}
ltmc_def lemc_refl lemc_anti lemc_trans.

Lemma leEmnm m1 m2 : (m1 <= m2)%O = (mdeg m1 :: val m1 <= mdeg m2 :: val m2)%O.
Expand All @@ -528,7 +528,8 @@ Proof. by []. Qed.
Lemma ltEmnm m m' : (m < m')%O = (mdeg m :: m < mdeg m' :: m')%O.
Proof. by []. Qed.

HB.instance Definition _ := Order.POrder_isTotal.Build tt 'X_{1..n} lemc_total.
HB.instance Definition _ :=
Order.POrder_isTotal.Build Order.default_display 'X_{1..n} lemc_total.

Lemma le0m m : (0%MM <= m)%O.
Proof.
Expand All @@ -537,7 +538,8 @@ rewrite leEmnm; have [/eqP|] := eqVneq (mdeg m) 0%N.
by rewrite -lt0n mdeg0 lexi_cons leEnat; case: ltngtP.
Qed.

HB.instance Definition _ := Order.hasBottom.Build tt 'X_{1..n} le0m.
HB.instance Definition _ :=
Order.hasBottom.Build Order.default_display 'X_{1..n} le0m.

Lemma ltmcP m1 m2 : mdeg m1 = mdeg m2 -> reflect
(exists2 i : 'I_n, forall (j : 'I_n), j < i -> m1 j = m2 j & m1 i < m2 i)
Expand Down
15 changes: 13 additions & 2 deletions src/ssrcomplements.v
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,17 @@ Unset Printing Implicit Defensive.

Import Order.Theory GRing.Theory.

(* -------------------------------------------------------------------- *)
(* Compatibility layer for Order.disp_t introduced in MathComp 2.3 *)
(* TODO: remove when we drop the support for MathComp 2.2 *)
Module Order.
Import Order.
Definition disp_t : Set.
Proof. exact: disp_t || exact: unit. Defined.
Definition default_display : disp_t.
Proof. exact: tt || exact: Disp tt tt. Defined.
End Order.

(* -------------------------------------------------------------------- *)
Lemma lreg_prod (T : eqType) (R : ringType) (r : seq T) (P : pred T) (F : T -> R):
(forall x, x \in r -> P x -> GRing.lreg (F x))
Expand Down Expand Up @@ -235,7 +246,7 @@ Qed.

(* -------------------------------------------------------------------- *)
Section LatticeMisc.
Context {T : eqType} {disp : unit} {U : bDistrLatticeType disp}.
Context {T : eqType} {disp : Order.disp_t} {U : bDistrLatticeType disp}.
Context (P : pred T) (F : T -> U).

Implicit Type (r : seq T).
Expand Down Expand Up @@ -275,7 +286,7 @@ End LatticeMisc.

(* -------------------------------------------------------------------- *)
Section WF.
Context {disp : unit} {T : porderType disp}.
Context {disp : Order.disp_t} {T : porderType disp}.

Hypothesis wf: forall (P : T -> Type),
(forall x, (forall y, y < x -> P y) -> P x)
Expand Down

0 comments on commit 3b79f76

Please sign in to comment.